scholarly journals Identification of Immune Function-Related Subtypes in Cutaneous Melanoma

Life ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 925
Author(s):  
Lin Liu ◽  
Junkai Zhu ◽  
Tong Jin ◽  
Mengjia Huang ◽  
Yi Chen ◽  
...  

Tumour immunotherapy combined with molecular typing is a new therapy to help select patients. However, molecular typing algorithms related to tumour immune function have not been thoroughly explored. We herein proposed a single sample immune signature network (SING) method to identify new immune function-related subtypes of cutaneous melanoma of the skin. A sample-specific network and tumour microenvironment were constructed based on the immune annotation of cutaneous melanoma samples. Then, the differences and heterogeneity of immune function among different subtypes were analysed and verified. A total of 327 cases of cutaneous melanoma were divided into normal and immune classes; the immune class had more immune enrichment characteristics. After further subdividing the 327 cases into three immune-related subtypes, the degree of immune enrichment in the “high immune subtype” was greater than that in other subtypes. Similar results were validated in both tumour samples and cell lines. Sample-specific networks and the tumour microenvironment based on immune annotation contribute to the mining of cutaneous melanoma immune function-related subtypes. Mutations in B2M and PTEN are considered potential therapeutic targets that can improve the immune response. Patients with a high immune subtype can generally obtain a better immune prognosis effect, and the prognosis may be improved when combined with TGF-β inhibitors.

Cancers ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 3331
Author(s):  
Alex Gordon-Weeks ◽  
Arseniy Yuzhalin

The extracellular matrix (ECM) plays an increasingly recognised role in the development and progression of cancer. Whilst significant progress has been made in targeting aspects of the tumour microenvironment such as tumour immunity and angiogenesis, there are no therapies that address the cancer ECM. Importantly, immune function relies heavily on the structure, physics and composition of the ECM, indicating that cancer ECM and immunity are mechanistically inseparable. In this review we highlight mechanisms by which the ECM shapes tumour immunity, identifying potential therapeutic targets within the ECM. These data indicate that to fully realise the potential of cancer immunotherapy, the cancer ECM requires simultaneous consideration.


2021 ◽  
Vol 9 (6) ◽  
pp. e002549
Author(s):  
Hiroyuki Katayama ◽  
Makoto Kobayashi ◽  
Ehsan Irajizad ◽  
Alejandro Sevillarno ◽  
Nikul Patel ◽  
...  

BackgroundCitrulline post-translational modification of proteins is mediated by protein arginine deiminase (PADI) family members and has been associated with autoimmune diseases. The role of PADI-citrullinome in immune response in cancer has not been evaluated. We hypothesized that PADI-mediated citrullinome is a source of neoantigens in cancer that induces immune response.MethodsProtein expression of PADI family members was evaluated in 196 cancer cell lines by means of indepth proteomic profiling. Gene expression was assessed using messenger RNA data sets from The Cancer Genome Atlas. Immunohistochemical analysis of PADI2 and peptidyl-citrulline was performed using breast cancer tissue sections. Citrullinated 12–34-mer peptides in the putative Major Histocompatibility Complex-II (MHC-II) binding range were profiled in breast cancer cell lines to investigate the relationship between protein citrullination and antigen presentation. We further evaluated immunoglobulin-bound citrullinome by mass spectrometry using 156 patients with breast cancer and 113 cancer-free controls.ResultsProteomic and gene expression analyses revealed PADI2 to be highly expressed in several cancer types including breast cancer. Immunohistochemical analysis of 422 breast tumor tissues revealed increased expression of PADI2 in ER− tumors (p<0.0001); PADI2 protein expression was positively correlated (p<0.0001) with peptidyl-citrulline staining. PADI2 expression exhibited strong positive correlations with a B cell immune signature and with MHC-II-bound citrullinated peptides. Increased circulating citrullinated antigen–antibody complexes occurred among newly diagnosed breast cancer cases relative to controls (p=0.0012).ConclusionsAn immune response associated with citrullinome is a rich source of neoantigens in breast cancer with a potential for diagnostic and therapeutic applications.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Mary Jo Rademacher ◽  
Anahi Cruz ◽  
Mary Faber ◽  
Robyn A. A. Oldham ◽  
Dandan Wang ◽  
...  

AbstractInterleukin-12 (IL-12) is an inflammatory cytokine that has demonstrated efficacy for cancer immunotherapy, but systemic administration has detrimental toxicities. Lentiviral transduction eliciting IL-12-producing human sarcoma for autologous reintroduction provides localized delivery for both innate and adaptive immune response augmentation. Sarcoma cell lines and primary human sarcoma samples were transduced with recombinant lentivirus engineering expression of human IL-12 (hu-IL-12). IL-12 expressing sarcomas were assessed in vitro and in vivo following implantation into humanized NSG and transgenic human IL-15 expressing (NSG.Tg(Hu-IL-15)) murine models. Lentiviral transduction (LV/hu-IL-12) of human osteosarcoma, Ewing sarcoma and rhabdomyosarcoma cell lines, as well as low-passage primary human sarcomas, engendered high-level expression of hu-IL-12. Hu-IL-12 demonstrated functional viability, eliciting specific NK cell-mediated interferon-γ (IFN-γ) release and cytotoxic growth restriction of spheroids in vitro. In orthotopic xenograft murine models, the LV/hu-IL-12 transduced human sarcoma produced detectable IL-12 and elicited an IFN-γ inflammatory immune response specific to mature human NK reconstitution in the NSG.Tg(Hu-IL-15) model while restricting tumor growth. We conclude that LV/hu-IL-12 transduction of sarcoma elicits a specific immune reaction and the humanized NSG.Tg(Hu-IL-15) xenograft, with mature human NK cells, can define in vivo anti-tumor effects and systemic toxicities. IL-12 immunomodulation through autologous tumor transduction and reintroduction merits exploration for sarcoma treatment.


2020 ◽  
Vol 21 (8) ◽  
pp. 2934 ◽  
Author(s):  
Magdalena Surman ◽  
Sylwia Kędracka-Krok ◽  
Dorota Hoja-Łukowicz ◽  
Urszula Jankowska ◽  
Anna Drożdż ◽  
...  

Cutaneous melanoma (CM) is an aggressive type of skin cancer for which effective biomarkers are still needed. Recently, the protein content of extracellular vesicles (ectosomes and exosomes) became increasingly investigated in terms of its functional role in CM and as a source of novel biomarkers; however, the data concerning the proteome of CM-derived ectosomes is very limited. We used the shotgun nanoLC–MS/MS approach to the profile protein content of ectosomes from primary (WM115, WM793) and metastatic (WM266-4, WM1205Lu) CM cell lines. Additionally, the effect exerted by CM ectosomes on recipient cells was assessed in terms of cell proliferation (Alamar Blue assay) and migratory properties (wound healing assay). All cell lines secreted heterogeneous populations of ectosomes enriched in the common set of proteins. A total of 1507 unique proteins were identified, with many of them involved in cancer cell proliferation, migration, escape from apoptosis, epithelial–mesenchymal transition and angiogenesis. Isolated ectosomes increased proliferation and motility of recipient cells, likely due to the ectosomal transfer of different cancer-promoting molecules. Taken together, these results confirm the significant role of ectosomes in several biological processes leading to CM development and progression, and might be used as a starting point for further studies exploring their diagnostic and prognostic potential.


1995 ◽  
Vol 64 (3) ◽  
pp. 182-188 ◽  
Author(s):  
Eveliene Manten-Horst ◽  
Erik H. J. Danen ◽  
Lia Smit ◽  
Margriet Snoek ◽  
I. Le Caroline Poole ◽  
...  

2004 ◽  
Vol 100 (5) ◽  
pp. 1108-1118 ◽  
Author(s):  
Jens A. Kølsen-Petersen ◽  
Jens-Ole D. Nielsen ◽  
Else M. Tonnesen

Background Previous studies found hypertonicity to affect immune responses in intact laboratory animals and in human blood cell cultures. In this study, the authors investigated the cellular immune response to surgery after preoperative infusion of hypertonic saline in humans. Methods Sixty-two women scheduled to undergo abdominal hysterectomy were randomly assigned to single-blinded infusion of 4 ml/kg NaCl, 7.5%; 4 ml/kg NaCl, 0.9%; or 32 ml/kg NaCl, 0.9%, over 20 min. Blood was collected at baseline, during surgery, and 1, 24, and 48 h after surgery for the determination of leukocyte and differential counts, flow cytometric phenotyping of mononuclear cells, and natural killer cell activity against K 562 tumor cells. Phytohemagglutinin-induced lymphocyte proliferation, plasma elastase, and neutrophil chemotaxis were measured at the same time points except during surgery. The authors tested cell-mediated immune function in vivo by delayed-type hypersensitivity reaction in the skin. Results Surgery induced well-known changes in the cellular immune response, which were unrelated to the tonicity or volume of the infused fluids. Conclusion Infusion of a clinically relevant dose of hypertonic saline did not seem to modify the postoperative cellular immune response after elective abdominal hysterectomy.


2021 ◽  
Vol 12 ◽  
Author(s):  
Xiangtao Zheng ◽  
Weiwei Chen ◽  
Fangchen Gong ◽  
Ying Chen ◽  
Erzhen Chen

Sepsis is defined as life-threatening organ dysfunction caused by a dysregulated host response to infection. Recently was been found that pyroptosis is a unique form of proinflammatory programmed death, that is different from apoptosis. A growing number of studies have investigated pyroptosis and its relationship with sepsis, including the mechanisms, role, and relevant targets of pyroptosis in sepsis. While moderate pyroptosis in sepsis can control pathogen infection, excessive pyroptosis can lead to a dysregulated host immune response and even organ dysfunction. This review provides an overview of the mechanisms and potential therapeutic targets underlying pyroptosis in sepsis identified in recent decades, looking forward to the future direction of treatment for sepsis.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 362-362
Author(s):  
Jianbiao Zhou ◽  
Yunlu Jia ◽  
Tze King Tan ◽  
Tae-Hoon Chung ◽  
Takaomi Sanda ◽  
...  

Background: Multiple myeloma (MM) is an aggressive neoplastic plasma cell cancer characterized by diversely cytogenetic abnormalities. MM can be divided into subtypes with immunoglobulin heavy chain (IGH) gene translocations involving CCND1-3, FGFR3/MMSET, MAFs and hyperdiploid myeloma containing trisomies of several odd numbered chromosomes 3, 5, 7, 9, 11, 15, 19, and 21. Although several new drugs have been introduced into clinic, treatment for MM patients remains challenge and refractory/resistant to therapy is often seen. Thus, a better understanding of the molecular pathogenesis of MM can lead to generate new prognostic classification and identify new therapeutic targets. Super-enhancers (SEs) are defined as large clusters of cis-acting enhancers, marked by high level bindings of acetylation of histone H3 lysine 27 (H3K27ac) and mediator complex. SEs have been shown to control genes for maintaining cellular identity and also key tumor drivers in various malignancies. Methods: H3K27Ac ChIP-seq and RNA-seq were performed on primary MM patient samples, MM cell lines. Normal plasma cells and lymphoma cell lines were served as controls. We systematically compared SEs and their associated genes of normal and cancerous tissue. THZ1, a CDK7 inhibitor, was used to efficiently down-regulate SE-associated genes. Combinatory analysis of THZ1-sensitive and SE-associated gene revealed a number of promising MM oncogenes. CRISPR/Cas9 technology and ectopic expression experiments in conjunction with cellular functional assays were performed to determine the effects of candidate SE-genes on MM cells. Circularized chromatin conformation capture followed by sequencing (4C-seq) was applied to explore the direct contact of SE and promoter. Results: SE analysis uncovered some cell lineage-specific transcription factors (TFs) and known oncogenes in MM. Several key TFs, including IRF4, PRDM1, MYC and XBP1, were identified in most MM samples, confirming the origin of MM cells. These data reinforce the concept that SE establishment is a key component of MM biology. The acquisition of SEs around oncogene drivers is widely observed during tumorigenesis. ST3GAL6 and ADM were two known oncogenic drivers in myeloma cells, which were associated with super-enhancers in all MM samples but not in normal plasma cell and lymphoma cells. We also found SE constituents for multiple subtype-specific key oncogenes such as CCND1 in t(11;14) cells, C-MAF in t(14;16) cells, and NSD2 and FGFR3 in t(4;14) cells. Furthermore, THZ1 showed prominent anti-neoplastic effect against MM cells. SE-associated genes were more sensitive to THZ1 compared with those genes associated with typical enhancers (TEs). By overlapping THZ1-sensitve gene with SE-associated genes, we identified a number of novel MM oncogenes, including MAGI2, EDEM3, HJURP, LAMP5, MBD1 and UCK2 as a potential druggable kinase. The expression level of MAGI2 and HJURP confers poor prognosis in several MM datasets. MAGI2 silencing in MM cells decreased cell proliferation and induced apoptosis. qRT-PCR and Western blot analysis confirmed the overexpression of HJURP in t(4;14) cells relative to non-t(4;14) MM cells. Furthermore, 4C-seq analysis revealed the physical interaction between HJURP-SE and promoter and THZ1 treatment diminished this interaction. Motif search at SE constituents revealed a highly significant enrichment of NSD2 recognition. Significant reduction of NSD2 binding at HJURP-SE region was observed in KMS11 infected with NSD2-specific shRNAs. Interestingly, blocking SE sites by CRISPR/Cas9i or silencing HJURP by shRNA led to decreased HJURP expression and cell apoptosis, whereas overexpression of this gene promoted cell growth. Taken together, our data demonstrated that HJURP is a novel SE-associated oncogene in t(4;14) MM. Conclusions: Our integrative approaches by combing H3K27Ac ChIP-seq, RNA-seq and THZ1-sensitive transcript defined the landscape of SE and identified SE-associated novel oncogenes, as well as lineage-specific TFs in MM. Furthermore, we also revealed subtype-specific SE-driving oncogenic program in MM. Taken together, these results not provide novel insight into the MM pathology, but also offer novel, potential therapeutic targets, such as MAGI2, and HJURP for the treatment of MM patients. Disclosures No relevant conflicts of interest to declare.


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Alexander P Browning ◽  
Jesse A Sharp ◽  
Ryan J Murphy ◽  
Gency Gunasingh ◽  
Brodie Lawson ◽  
...  

Tumour spheroids are common in vitro experimental models of avascular tumour growth. Compared with traditional two-dimensional culture, tumour spheroids more closely mimic the avascular tumour microenvironment where spatial differences in nutrient availability strongly influence growth. We show that spheroids initiated using significantly different numbers of cells grow to similar limiting sizes, suggesting that avascular tumours have a limiting structure; in agreement with untested predictions of classical mathematical models of tumour spheroids. We develop a novel mathematical and statistical framework to study the structure of tumour spheroids seeded from cells transduced with fluorescent cell cycle indicators, enabling us to discriminate between arrested and cycling cells and identify an arrested region. Our analysis shows that transient spheroid structure is independent of initial spheroid size, and the limiting structure can be independent of seeding density. Standard experimental protocols compare spheroid size as a function of time; however, our analysis suggests that comparing spheroid structure as a function of overall size produces results that are relatively insensitive to variability in spheroid size. Our experimental observations are made using two melanoma cell lines, but our modelling framework applies across a wide range of spheroid culture conditions and cell lines.


2021 ◽  
Author(s):  
Dashan Sun

CRISPR system is a powerful gene editing tool which has already been reported to address a variety of gene relevant diseases in different cell lines. However, off-target effect and immune response caused by Cas9 remain two fundamental problems. In our work, time-delayed safety switches are designed based on either artificial ultrasensitivity transmission module or intrinsic time delay in biomolecular activities. By addressing gene therapy efficiency, off-target effect, immune response and drug accumulation, we hope our safety switches may offer inspiration in realizing safe and efficient gene therapy in humans.


Sign in / Sign up

Export Citation Format

Share Document