scholarly journals A Numerical Model for the Analysis of the Bearings of a Diesel Engine Subjected to Conditions of Wear and Misalignment

Lubricants ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 42
Author(s):  
Carlos Pardo García ◽  
Jhan Piero Rojas ◽  
Sofia Orjuela Abril

In the present work, a numerical model is developed to investigate the influence of wear and misalignment on the bearings of a stationary diesel engine. The model implemented considers the effects of surface wear on the bearing, cavitation effects, and surface roughness. For the numerical analysis, changes in the surface roughness of , , and are defined, and changes in the bearing load of 50%, 75%, and 100%. The results demonstrated that increasing the surface roughness intensifies the bearing wear, which represents 18% and 140% of the bearing clearance for the roughness of and , respectively. Additionally, the surface roughness causes a considerable increase in the bearing wear rate. The results described a maximum wear rate of . In general, increasing the bearing load by 25% doubles the hydrodynamic pressure conditions increases friction force by 33%, and reduces lubrication film thickness by 12%. The analysis of the angle of deflection, and , shows that the moment and the degree of misalignment tend to increase significantly with the increase in the magnitude of the angle . Negative angles of deflection, , produce a greater increase in the degree of misalignment and the moment. This implies a greater chance of contact with the bearing surface. In conclusion, the proposed methodology serves as a reliable tool to simultaneously evaluate key parameters on the tribological behavior of bearings that further extend their endurance and minimize wear damage.

Author(s):  
Amir Torabi ◽  
Saleh Akbarzadeh ◽  
Mohammadreza Salimpour

In this study, a numerical model is developed to show the performance improvement of a cam–follower mechanism when using a roller type follower compared to the flat-faced follower. Nonconformal geometry besides the thermal effects due to the shearing of the lubricant film results in formation of a thin film in which the asperities contribute in carrying the load. The numerical model is developed in which the geometry, load, speed, lubricant properties, and the surface roughness profile is taken as input and the film thickness and friction coefficient as a function of cam angle are predicted. The asperities are assumed to have elastic, elasto-plastic, and plastic deformation. Simulation results indicated that the thermal effects cannot be neglected. Surface roughness is also a key parameter that affects the pressure distribution, film thickness, and friction coefficient. Finally, asperity and hydrodynamic pressure is reported and the performance of the two mechanisms is compared. Roller follower has a considerable preference in terms of friction coefficient compared to flat-faced follower. The minimum film thickness, however, is slightly larger in the flat follower.


2019 ◽  
Vol 49 (3) ◽  
pp. 193-200
Author(s):  
N. A. ZABALA ◽  
P. CASTRO ◽  
Walter TUCKART

The purpose of this study is to determinate the influence of surface roughness on the tribological behavior of a lubricated steel against steel tribosystem. Tests were carried out at high pressure and slow sliding speed, in order to simulate at small scale, the contact conditions found in the seal of the threaded joints used in oil & gas casing and tubing strings. Tests were carried out with a simplified block-onring test, varying the surface roughness of rings between 1.3 to 3 m Ra values. A thread compound lubricant containing lead, copper, zinc and graphite was used. During each cycle of test, the normal load was varied linearly between 250 N and 7000 N. An exponential correlation between Ra and Rt roughness values with the wear damage was found and the wear damage of the blocks decreases about 40 percent with the increasing of initial Ra roughness parameter in the movil surface.


2019 ◽  
Vol 177 (2) ◽  
pp. 151-155
Author(s):  
Ksenia SIADKOWSKA ◽  
Mirosław WENDEKER ◽  
Łukasz GRABOWSKI

The paper presents the research results of the injector construction with the modified injection nozzle. The injector is designed for a prototype opposed-piston aircraft diesel engine. The measurements were based on the Mie scattering technique. The conditions of the experiment corresponded to maximum loads similar to those occurring at the start. The measuring point was selected in line with the analysis of engine operating conditions: combustion chamber pressure at the moment of fuel delivery (6 MPa) and fuel pressure in the injection rail (140 MPa). The analysis focused on the average spray range and distribution, taking into account the differences between holes in the nozzle. As a result of the conducted research, the fuel spray range was defined with the determined parameters of injection. The fuel spray ranges inside the constant volume chamber at specific injection pressures and in the chamber were examined, and the obtained results were used to verify and optimize the combustion process in the designed opposed-piston two-stroke engine.


2020 ◽  
pp. 146808742093016
Author(s):  
Onur Biyiklioğlu ◽  
Mustafa Ertunc Tat

Internal combustion engines consume about 90% of fuel refined from crude oil which supplies 30% of the annual global flow of energy. Heavy-duty diesel engines are the primary source of power used in highways, marine, railroads, and power stations. The right coating can improve the tribological properties of cylinder liners and increase the mechanical efficiency of an engine. Also, it can help to extend the maintenance periods, and enhance the reliability of the vehicles. In this research, tribological and economic evaluations were performed for coated and uncoated substrates from a cylinder liner of a heavy-duty diesel engine, aiming to lower friction, wear rate, and maintenance cost. A reciprocating friction test was conducted under dry condition using Wolfram carbide (tungsten carbide) ball applied a 10 N normal load on a ball on disk geometry. The cylinder liner was made of gray cast iron, and the substrates obtained were coated with three different coating materials (Cr3C2/NiCr, NiCr, and Al2O3/TiO2) through the thermal spray and high-velocity oxy-fuel coating process. Tribological evaluations showed that the substrates coded with Al2O3/TiO2 and Cr3C2/NiCr had the lowest friction coefficient and wear rate. The most economical coating was Al2O3/TiO2, being able to supply about 61% lower coefficient of friction and 94% less wear rate relative to the uncoated sample, for the price of one-third of the Cr3C2/NiCr coating and one half of a new gray cast iron cylinder liner.


2000 ◽  
Vol 613 ◽  
Author(s):  
Uday Mahajan ◽  
Seung-Mahn Lee ◽  
Rajiv K. Singh

ABSTRACTIn this paper, results of studies on the addition of salt to a polishing slurry, in terms of its effect on slurry stability, SiO2 polishing rate and surface roughness of the polished surface are presented. Three salts, viz. LiCl, NaCl and KCl were selected, and three concentrations were tested. Polishing rate measurements using these slurries show that adding salt leads to increased removal rate without affecting surface roughness significantly. Based on these results, we can say that the agglomerates formed by adding salt to the slurry are fairly soft and easily broken during the polishing process. In addition, turbidity and particle size measurements show that significant coagulation of the particles in the slurry occurs only at the highest salt concentration, and is fastest for LiCl and NaCl, with KCl showing the slowest coagulation. From these results, it can be concluded that the enhancement in polish rate is due to increased contact at the wafer-pad-slurry interface, and not due to formation of larger agglomerated particles in the slurry. This is because of reduced electrostatic repulsion between these three surfaces, due to the screening of their negative surface charge by the metal ions in solution, resulting in a higher wear rate.


2020 ◽  
Vol 7 ◽  
pp. 34 ◽  
Author(s):  
Samuel Ranti Oke ◽  
Gabriel Seun Ogunwande ◽  
Moshood Onifade ◽  
Emmanuel Aikulola ◽  
Esther Dolapo Adewale ◽  
...  

Machining is one of the major contributors to the high cost of titanium-based components. This is as a result of severe tool wear and high volume of waste generated from the workpiece. Research efforts seeking to reduce the cost of titanium alloys have explored the possibility of either eliminating machining as a processing step or optimising parameters for machining titanium alloys. Since the former is still at the infant stage, this article provides a review on the common machining techniques that were used for processing titanium-based components. These techniques are classified into two major categories based on the type of contact between the titanium workpiece and the tool. The two categories were dubbed conventional and non-conventional machining techniques. Most of the parameters that are associated with these techniques and their corresponding machinability indicators were presented. The common machinability indicators that are covered in this review include surface roughness, cutting forces, tool wear rate, chip formation and material removal rate. However, surface roughness, tool wear rate and metal removal rate were emphasised. The critical or optimum combination of parameters for achieving improved machinability was also highlighted. Some recommendations on future research directions are made.


2016 ◽  
Vol 61 (No. 4) ◽  
pp. 162-169 ◽  
Author(s):  
O.B. Oduntan ◽  
B.O. Omitoyin

There is need to determine the wear rates of disc mill hammer used for grinding groundnut cake, a major plant protein in fish feed. This surface wear damage characterised by scoring, cutting, deep grooving and gouging on a metal surface leads to high costs of production. The hammer wear rate was carried out using disc mill for different combinations of processing conditions: disc speed of 2,175, 3,900 and 4,350 rpm; screen size of 1.0, 2.0 and 3.0 mm; moisture contents of 12, 14 and 16% w.b. at 300 operating hours. Response Surface Method was used to optimize the operating variables. The wear rate was found to increase as the moisture content of the groundnut cake decreased. Quadratic models developed for the four responses (tip length loss, width loss, thickness loss and absolute mass) studied indicated the optimum conditions at disc speed 3,262.50 rpm, screen size 2.0 mm and moisture content 14% w.b. The study established that experimental data and model predictions agreed well.


2018 ◽  
Vol 46 ◽  
pp. 00011
Author(s):  
Krzysztof Kołodziejczyk

Modeling of multiphase systems, which includes suspensions, is an issue that is continually developed. There are no procedures at the moment that would clearly determine the way in which suspension is defined in numerical simulations. The article presents an analysis of the selection of a numerical model and the definition of the suspension with a polydisperse particle composition.


Sign in / Sign up

Export Citation Format

Share Document