scholarly journals Environmental Impact of Food Packaging Materials: A Review of Contemporary Development from Conventional Plastics to Polylactic Acid Based Materials

Materials ◽  
2020 ◽  
Vol 13 (21) ◽  
pp. 4994 ◽  
Author(s):  
Lindani Koketso Ncube ◽  
Albert Uchenna Ude ◽  
Enoch Nifise Ogunmuyiwa ◽  
Rozli Zulkifli ◽  
Isaac Nongwe Beas

Plastics have remained the material of choice, and after serving their intended purpose, a large proportion ends up in the environment where they persist for centuries. The packaging industry is the largest and growing consumer of synthetic plastics derived from fossil fuels. Food packaging plastics account for the bulk of plastic waste that are polluting the environment. Additionally, given the fact that petroleum reserves are finite and facing depletion, there is a need for the development of alternative materials that can serve the same purpose as conventional plastics. This paper reviews the function of packaging materials and highlights the future potential of the adoption of green materials. Biopolymers have emerged as promising green materials although they still have very low market uptake. Polylactic acid (PLA) has emerged as the most favoured bioplastic. However, it is limited by its high cost and some performance drawbacks. Blending with agricultural waste and natural fillers can result in green composites at low cost, low greenhouse gas emissions, and with improved performance for food packaging applications. The continent of Africa is proposed as a rich source of fibres and fillers that can be sustainably exploited to fabricate green composites in a bid to achieve a circular economy.

2017 ◽  
Vol 99 ◽  
pp. 650-659 ◽  
Author(s):  
Carolina Villegas ◽  
Alejandra Torres ◽  
Mauricio Rios ◽  
Adrián Rojas ◽  
Julio Romero ◽  
...  

Polymers ◽  
2019 ◽  
Vol 11 (12) ◽  
pp. 2039 ◽  
Author(s):  
Hongbo Chen ◽  
Jingjing Wang ◽  
Yaohua Cheng ◽  
Chuansheng Wang ◽  
Haichao Liu ◽  
...  

As the IV generation of packaging, biopolymers, with the advantages of biodegradability, process ability, combination possibilities and no pollution to food, have become the leading food packaging materials. Biopolymers can be directly extracted from biomass, synthesized from bioderived monomers and produced directly by microorganisms which are all abundant and renewable. The raw materials used to produce biopolymers are low-cost, some even coming from agrion dustrial waste. This review summarized the advances in protein-based films and coatings for food packaging. The materials studied to develop protein-based packaging films and coatings can be divided into two classes: plant proteins and animal proteins. Parts of proteins are referred in this review, including plant proteins i.e., gluten, soy proteins and zein, and animal proteins i.e., casein, whey and gelatin. Films and coatings based on these proteins have excellent gas barrier properties and satisfactory mechanical properties. However, the hydrophilicity of proteins makes the protein-based films present poor water barrier characteristics. The application of plasticizers and the corresponding post-treatments can make the properties of the protein-based films and coatings improved. The addition of active compounds into protein-based films can effectively inhibit or delay the growth of microorganisms and the oxidation of lipids. The review also summarized the research about the storage requirements of various foods that can provide corresponding guidance for the preparation of food packaging materials. Numerous application examples of protein-based films and coatings in food packaging also confirm their important role in food packaging materials.


2020 ◽  
Vol 12 (2) ◽  
pp. 652 ◽  
Author(s):  
Ángel Agüero ◽  
Diego Lascano ◽  
David Garcia-Sanoguera ◽  
Octavio Fenollar ◽  
Sergio Torres-Giner

This work reports the development and characterization of green composites based on polylactide (PLA) containing fillers and additives obtained from by-products or waste-streams from the linen processing industry. Flaxseed flour (FSF) was first produced by the mechanical milling of golden flaxseeds. The resultant FSF particles were melt-compounded at 30 wt% with PLA in a twin-screw extruder. Two multi-functionalized oils derived from linseed, namely epoxidized linseed oil (ELO) and maleinized linseed oil (MLO), were also incorporated during melt mixing at 2.5 and 5 parts per hundred resin (phr) of composite. The melt-compounded pellets were thereafter shaped into pieces by injection molding and characterized. Results showed that the addition of both multi-functionalized linseed oils successfully increased ductility, toughness, and thermal stability of the green composite pieces whereas water diffusion was reduced. The improvement achieved was related to both a plasticizing effect and, more interestingly, an enhancement of the interfacial adhesion between the biopolymer and the lignocellulosic particles by the reactive vegetable oils. The most optimal performance was attained for the MLO-containing green composite pieces, even at the lowest content, which was ascribed to the higher solubility of MLO with the PLA matrix. Therefore, the present study demonstrates the potential use of by-products or waste from flax (Linum usitatissimum L.) to obtain renewable raw materials of suitable quality to develop green composites with high performance for market applications such as rigid food packaging and food-contact disposable articles in the frame of the Circular Economy and Bioeconomy.


Author(s):  
Aarushi Nigam

Abstract: Non-stop research is afoot to replace synthetic materials with green-materials for sound absorption purposes. Employing of agricultural waste as building materials has been a successful trend throughout the years. This research targets to utilize sugarcane bagasse (SB) fibers as sound barriers with sodium silicate as an adhesive. The SB fibers were treated in an alkaline solution for delignification and to improve the surface morphology. The SB fibers were casted into sheet and further tested for sound transmission loss. Experimentation revealed that the fabricated sheets can be viable option as a sound absorbing medium. A tubular porous structure was observed through Field Emission Scanning Microscope (FESEM). It has the capability to be used as a low-cost, biodegradable, and eco-friendly acoustic material as compared to glass wool and other synthetic acoustic materials. Keywords: Acoustic material, Alkali-treatment, Ambience, FESEM microscopy, Low-cost, Natural fiber, Performance, Sugarcane Bagasse, Sustainability


2020 ◽  
Vol 21 (14) ◽  
pp. 4942 ◽  
Author(s):  
Raffaele Porta ◽  
Mohammed Sabbah ◽  
Prospero Di Pierro

Oil-derived plastics are the most commonly used materials for packaging because of their features, low cost, and availability of resources for manufacturing [...]


2021 ◽  
Vol 22 (18) ◽  
pp. 9663
Author(s):  
Chunming Tan ◽  
Fei Han ◽  
Shiqi Zhang ◽  
Pinglan Li ◽  
Nan Shang

Food microbial contamination not only poses the problems of food insecurity and economic loss, but also contributes to food waste, which is another global environmental problem. Therefore, effective packaging is a compelling obstacle for shielding food items from outside contaminants and maintaining its quality. Traditionally, food is packaged with plastic that is rarely recyclable, negatively impacting the environment. Bio-based materials have attracted widespread attention for food packaging applications since they are biodegradable, renewable, and have a low carbon footprint. They provide a great opportunity to reduce the extensive use of fossil fuels and develop food packaging materials with good properties, addressing environmental problems and contributing significantly to sustainable development. Presently, the developments in food chemistry, technology, and biotechnology have allowed us to fine-tune new methodologies useful for addressing major safety and environmental concerns regarding packaging materials. This review presents a comprehensive overview of the development and potential for application of new bio-based materials from different sources in antimicrobial food packaging, including carbohydrate (polysaccharide)-based materials, protein-based materials, lipid-based materials, antibacterial agents, and bio-based composites, which can solve the issues of both environmental impact and prevent foodborne pathogens and spoilage microorganisms. In addition, future trends are discussed, as well as the antimicrobial compounds incorporated in packaging materials such as nanoparticles (NPs), nanofillers (NFs), and bio-nanocomposites.


TAPPI Journal ◽  
2014 ◽  
Vol 13 (2) ◽  
pp. 17-25
Author(s):  
JUNMING SHU ◽  
ARTHAS YANG ◽  
PEKKA SALMINEN ◽  
HENRI VAITTINEN

The Ji’an PM No. 3 is the first linerboard machine in China to use multilayer curtain coating technology. Since successful startup at the end of 2011, further development has been carried out to optimize running conditions, coating formulations, and the base paper to provide a product with satisfactory quality and lower cost to manufacture. The key challenges include designing the base board structure for the desired mechanical strength, designing the surface properties for subsequent coating operations, optimizing the high-speed running of the curtain coater to enhance production efficiency, minimizing the amount of titanium dioxide in the coating color, and balancing the coated board properties to make them suitable for both offset and flexographic printing. The pilot and mill scale results show that curtain coating has a major positive impact on brightness, while smoothness is improved mainly by the blade coating and calendering conditions. Optimization of base board properties and the blade + curtain + blade concept has resulted in the successful use of 100% recycled fiber to produce base board. The optical, mechanical, and printability properties of the final coated board meet market requirements for both offset and flexographic printing. Machine runnability is excellent at the current speed of 1000 m/min, and titanium dioxide has been eliminated in the coating formulations without affecting the coating coverage. A significant improvement in the total cost of coated white liner production has been achieved, compared to the conventional concept of using virgin fiber in the top ply. Future development will focus on combining low cost with further quality improvements to make linerboard suitable for a wider range of end-use applications, including frozen-food packaging and folding boxboard.


Author(s):  
Gonzalo Flores-Morales ◽  
Mónica Díaz ◽  
Patricia Arancibia-Avila ◽  
Michelle Muñoz-Carrasco ◽  
Pamela Jara-Zapata ◽  
...  

Abstract A feasibility analysis of tertiary treatment for Organic Liquid Agricultural Waste is presented using filamentous algae belonging to the genus Cladophora sp. as an alternative to chemical tertiary treatment. The main advantages of tertiary treatments that use biological systems are the low cost investment and the minimal dependence on environmental variables. In this work we demonstrate that filamentous algae reduces the nutrient load of nitrate (circa 75%) and phosphate (circa 86%) from the organic waste effluents coming from dairy farms after nine days of culture, with the added advantage being that after the treatment period, algae removal can be achieved by simple procedures. Currently, the organic wastewater is discarded into fields and local streams. However, the algae can acquire value as a by-product since it has various uses as compost, cellulose, and biogas. A disadvantage of this system is that clean water must be used to achieve enough water transparency to allow algae growth. Even so, the nutrient reduction system of the organic effluents proposed is friendly to the ecosystem, compared to tertiary treatments that use chemicals to precipitate and collect nutrients such as nitrates and phosphates.


Sign in / Sign up

Export Citation Format

Share Document