scholarly journals Structure and Properties of Biodegradable PLLA/ZnO Composite Membrane Produced via Electrospinning

Materials ◽  
2020 ◽  
Vol 14 (1) ◽  
pp. 2
Author(s):  
Daria A. Goncharova ◽  
Evgeny N. Bolbasov ◽  
Anna L. Nemoykina ◽  
Ali A. Aljulaih ◽  
Tamara S. Tverdokhlebova ◽  
...  

These days, composite materials based on polymers and inorganic nanoparticles (NPs) are widely used in optoelectronics and biomedicine. In this work, composite membranes of polylactic acid and ZnO NPs containing 5–40 wt.% of the latter NPs were produced by means of electrospinning. For the first time, polymer material loaded with up to 40 wt.% of ZnO NPs (produced via laser ablation in air and having non-modified surface) was used to prepare fiber-based composite membranes. The morphology, phase composition, mechanical, spectral and antibacterial properties of the membranes were tested by a set of analytical techniques including SEM, XRD, FTIR, UV-vis, and photoluminescence spectroscopy. Antibacterial activity of the materials was evaluated following standard procedures (ISO 20743:2013) and using S. aureus and E. coli bacteria. It is shown that incorporation of 5–10 wt.% of NPs led to improved mechanical properties of the composite membranes, while further increase of ZnO content up to 20 wt.% and above resulted in their noticeable deterioration. At the same time, the antibacterial properties of ZnO-rich membranes were more pronounced, which is explained by a larger number of surface-exposed ZnO NPs, in addition to those embedded into the bulk of fiber material.

2019 ◽  
Author(s):  
Daye Sun ◽  
Jonathan Turner ◽  
Nan Jiang ◽  
Songsong Zhu ◽  
Li Zhang ◽  
...  

<p>Room temperature atmospheric pressure microplasma (APM) was deployed for the first time for the in situ synthesis of anti-bacterial silver nanoparticle / chitosan (AgNP/CS) nanocomposites. The plasma induced liquid chemistry plays a role in the in situ formation of AgNP, the size distribution of which depends on the silver salt precursor concentration. The microplasma process has also simultaneously tailored the physical properties of the composites, rendering more crosslinked chitosan polymer network with shorter molecular chains. The formation of AgNP within the <i>in situ</i> modified chitosan has led to nanocomposites with overall improved mechanical properties and better stability in simulated body fluid. Our plasma synthesized AgNP/CS nanocomposites also demonstrate effective antibacterial properties against <i>E. Coli</i> and <i>S. Aureus</i> bacterial strains, showing their promise in potential antimicrobial applications.</p>


Materials ◽  
2021 ◽  
Vol 14 (21) ◽  
pp. 6281
Author(s):  
Denis N. Chausov ◽  
Dmitriy E. Burmistrov ◽  
Alexander D. Kurilov ◽  
Nikolay F. Bunkin ◽  
Maxim E. Astashev ◽  
...  

The present study a comprehensive analysis of the antibacterial properties of a composite material based on borosiloxane and zinc oxide nanoparticles (ZnO NPs). The effect of the polymer matrix and ZnO NPs on the generation of reactive oxygen species, hydroxyl radicals, and long-lived oxidized forms of biomolecules has been studied. All variants of the composites significantly inhibited the division of E. coli bacteria and caused them to detach from the substrate. It was revealed that the surfaces of a composite material based on borosiloxane and ZnO NPs do not inhibit the growth and division of mammalians cells. It is shown in the work that the positive effect of the incorporation of ZnO NPs into borosiloxane can reach 100% or more, provided that the viscoelastic properties of borosiloxane with nanoparticles are retained.


Planta Medica ◽  
2020 ◽  
Vol 86 (15) ◽  
pp. 1089-1096
Author(s):  
Karmen Kapp ◽  
Anne Orav ◽  
Mati Roasto ◽  
Ain Raal ◽  
Tõnu Püssa ◽  
...  

AbstractMint flavorings are widely used in confections, beverages, and dairy products. For the first time, mint flavoring composition of mint candies and food supplements (n = 45), originating from 16 countries, as well as their antibacterial properties, was analyzed. The flavorings were isolated by Marcussonʼs type micro-apparatus and analyzed by GC-MS. The total content of the mint flavoring hydrodistilled extracts was in the range of 0.01 – 0.9%. The most abundant compounds identified in the extracts were limonene, 1,8-cineole, menthone, menthofuran, isomenthone, menthol and its isomers, menthyl acetate. The antimicrobial activity of 13 reference substances and 10 selected mint flavoring hydrodistilled extracts was tested on Escherichia coli and Staphylococcus aureus by broth dilution method. Linalool acetate and (−)-carvone, as most active against both bacteria, had the lowest MIC90 values. (+)-Menthyl acetate, (−)-menthyl acetate, and limonene showed no antimicrobial activity. Three of the tested extracts had antimicrobial activity against E. coli and 8 extracts against S. aureus. Their summary antimicrobial activity was not always in concordance with the activities of respective reference substances.


Polymers ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 425
Author(s):  
Korakot Charoensri ◽  
Chatchai Rodwihok ◽  
Duangmanee Wongratanaphisan ◽  
Jung A. Ko ◽  
Jin Suk Chung ◽  
...  

Improving the antibacterial activity of biodegradable materials is crucial for combatting widespread drug-resistant bacteria and plastic pollutants. In this work, we studied polyaniline (PANI)-functionalized zinc oxide nanoparticles (ZnO NPs) to improve surface charges. A PANI-functionalized ZnO NP surface was prepared using a simple impregnation technique. The PANI functionalization of ZnO successfully increased the positive surface charge of the ZnO NPs. In addition, PANI-functionalized ZnO improved mechanical properties and thermal stability. Besides those properties, the water permeability of the bionanocomposite films was decreased due to their increased hydrophobicity. PANI-functionalized ZnO NPs were applied to thermoplastic starch (TPS) films for physical properties and antibacterial studies using Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus). The PANI-functionalized ZnO bionanocomposite films exhibited excellent antibacterial activity for both E. coli (76%) and S. aureus (72%). This result suggests that PANI-functionalized ZnO NPs can improve the antibacterial activity of TPS-based bionanocomposite films.


2019 ◽  
Author(s):  
Daye Sun ◽  
Jonathan Turner ◽  
Nan Jiang ◽  
Songsong Zhu ◽  
Li Zhang ◽  
...  

<p>Room temperature atmospheric pressure microplasma (APM) was deployed for the first time for the in situ synthesis of anti-bacterial silver nanoparticle / chitosan (AgNP/CS) nanocomposites. The plasma induced liquid chemistry plays a role in the in situ formation of AgNP, the size distribution of which depends on the silver salt precursor concentration. The microplasma process has also simultaneously tailored the physical properties of the composites, rendering more crosslinked chitosan polymer network with shorter molecular chains. The formation of AgNP within the <i>in situ</i> modified chitosan has led to nanocomposites with overall improved mechanical properties and better stability in simulated body fluid. Our plasma synthesized AgNP/CS nanocomposites also demonstrate effective antibacterial properties against <i>E. Coli</i> and <i>S. Aureus</i> bacterial strains, showing their promise in potential antimicrobial applications.</p>


RSC Advances ◽  
2021 ◽  
Vol 11 (27) ◽  
pp. 16814-16822
Author(s):  
Fitri Khoerunnisa ◽  
Chintia Kulsum ◽  
Fitri Dara ◽  
Mita Nurhayati ◽  
Nisa Nashrah ◽  
...  

Chitosan/PEG/MWCNT/BKC membranes exhibit enhanced antibiofouling properties against S. aureus and E. coli. MWCNT/BKC are located as dispersed nano-clusters with π–π stacking interactions in the chitosan matrix, and are coved by PEG chains.


2017 ◽  
Vol 9 (33) ◽  
pp. 4776-4782 ◽  
Author(s):  
Nishant Kumar ◽  
Akhshay Singh Bhadwal ◽  
Mayank Garg ◽  
Reema Sharma ◽  
Suman Singh ◽  
...  

Societal impact: For the first time, biomimetic synthesis of crystalline and spherical ZnO nanoparticles from Saccharomyces cerevisiae is reported. Photocatalytic degradation of industrial pollutant 4-nitrophenol (4-NP) via biosynthesized ZnO NPs is shown. The antibacterial activity of biosynthesized ZnO NPs against E. coli 1302 is demonstrated.


2021 ◽  
Vol 36 (2) ◽  
pp. 93-110
Author(s):  
Princy Philip ◽  
Tomlal Jose ◽  
Sarath KS ◽  
Sunny Kuriakose

Silver nanoparticles with 5–10 nm diameters are synthesised using Couroupita guianensis flower extract. The synthesised silver nanoparticles found to show good antimicrobial activity against gram negative and gram positive bacteria. Poly(methyl methacrylate) nanofibers with pristine, surface roughened and coaxial hollow forms are prepared by electrospinning. The structural and morphological properties of these pure and structurally modified poly(methyl methacrylate) nanofibers are evidenced by various analytical techniques. The antimicrobial studies of poly(methyl methacrylate) nanofibers having different architectures incorporated with silver nanoparticles are carried out. It is found that, all the three forms of poly(methyl methacrylate) nanofibers incorporated with silver nanoparticles show antibacterial properties against both gram positive and gram negative bacteria. Among these, surface roughened poly(methyl methacrylate) nanofibers incorporated with silver nanoparticles show highest antibacterial activity than the other two structural forms. The present study offers an alternative to the existing optical lenses. People especially those who suffer from eye problems can protect their eyes in a better way from infectious agents by wearing optical lens made from C. guianensis stabilised silver nanoparticles incorporated poly(methyl methacrylate) nanofibers than that made from pure poly(methyl methacrylate) nanofibers or films.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Lan N. Truong ◽  
Brayden D. Whitlock

AbstractControlling infections has become one of the biggest problems in the world, whether measured in lives lost or money spent. This is worsening as pathogens continue becoming resistant to therapeutics. Antimicrobial surfaces are one strategy being investigated in an attempt to decrease the spread of infections through the most common route of transmission: surfaces, including hands. Regulators have chosen two hours as the time point at which efficacy should be measured. The objectives of this study were to characterize the new antimicrobial surface compressed sodium chloride (CSC) so that its action may be understood at timepoints more relevant to real-time infection control, under two minutes; to develop a sensitive method to test efficacy at short time points; and to investigate antifungal properties for the first time. E. coli and Candida auris are added to surfaces, and the surfaces are monitored by contact plate, or by washing into collection vats. An improved method of testing antimicrobial efficacy is reported. Antimicrobial CSC achieves at least 99.9% reduction of E. coli in the first two minutes of contact, and at least 99% reduction of C. auris in one minute.


Molecules ◽  
2021 ◽  
Vol 26 (7) ◽  
pp. 2072
Author(s):  
Maria Antonia Tănase ◽  
Maria Marinescu ◽  
Petruta Oancea ◽  
Adina Răducan ◽  
Catalin Ionut Mihaescu ◽  
...  

In the present work, the properties of ZnO nanoparticles obtained using an eco-friendly synthesis (biomediated methods in microwave irradiation) were studied. Saponaria officinalis extracts were used as both reducing and capping agents in the green nanochemistry synthesis of ZnO. Inorganic zinc oxide nanopowders were successfully prepared by a modified hydrothermal method and plant extract-mediated method. The influence of microwave irradiation was studied in both cases. The size, composition, crystallinity and morphology of inorganic nanoparticles (NPs) were investigated using dynamic light scattering (DLS), powder X-ray diffraction (XRD), SEM-EDX microscopy. Tunings of the nanochemistry reaction conditions (Zn precursor, structuring agent), ZnO NPs with various shapes were obtained, from quasi-spherical to flower-like. The optical properties and photocatalytic activity (degradation of methylene blue as model compound) were also investigated. ZnO nanopowders’ antibacterial activity was tested against Gram-positive and Gram-negative bacterial strains to evidence the influence of the vegetal extract-mediated synthesis on the biological activity.


Sign in / Sign up

Export Citation Format

Share Document