scholarly journals Structures, Bonding and Sensor Properties of Some Alkaline o-Phthalatocuprates

Materials ◽  
2021 ◽  
Vol 14 (19) ◽  
pp. 5548
Author(s):  
Sergey V. Gladnev ◽  
Mikhail V. Grigoryev ◽  
Mariya A. Kryukova ◽  
Evgenia M. Khairullina ◽  
Ilya I. Tumkin ◽  
...  

Comprehensive study of the structure and bonding of disodium, dipotassium and diammonium di-o-phthalatocuprates(II) dihydrates has been undertaken. The crystal structure of ammonium o-phthalatocuprate has been determined. The identity of structures of phthalatocuprate chains in potassium and ammonium salts has been revealed. Vibrational spectra of all three compounds have been recorded, and the assignment of vibrational bands has been made. Force field calculations have shown a minor effect of outer-sphere cations (Na+, K+, NH4+) on both intraligand (C-O) and metal–ligand bond strengths. Synthesized compounds have been tested as electrochemical sensors on D-glucose, dopamine and paracetamol. Their sensitivity to analytes varied in the order of Na+ > K+ > NH4+. This effect has been explained by the more pronounced steric hindrance of copper ions in potassium and ammonium salts.

2021 ◽  
Author(s):  
Lea Moshkovich ◽  
Oshra Saphier ◽  
Stanislav Popov ◽  
Yoram Shotland ◽  
Eldad Silberstein ◽  
...  

Abstract In the present study we present the dramatic effect that monovalent copper ions (Cu(I))have on the DNA polymerase chain reaction, and the moderate effect which monovalent silver ions (Ag(I)) have on it. Our research utilizes the commercial Polymerase Chain Reaction (PCR) system: in anaerobic conditions, in the presence of less than 0.1 mM of Cu(I) ions or in the presence of less than 10mM of Ag(I) ions, the PCR system was entirely shut down.Under the same conditions, 1 mM of divalent copper ions (Cu(II)) ions shows only a minor effect, while10mM of divalent Ni and Zn ions shows no effect at all.This finding can give some explanation for the strong antimicrobial activity of monovalent copper ions (Cu(I))as well as Ag(I). Although the mechanism of this effect is not yet fully understood, we recently published results showing that under the conditions of acidic pH, an unfavorable carbon source, low molecular oxygen concentration and elevated temperatures, the antibacterial action of Cu(I) ions is boosted, with a 106 bacterial population eliminated in less than 1 min by 0.4mM of Cu(I). Microscopy checking of E.coli morphology and light scattering testes showed mortality of bacteria with almost no lysis. These results suggest that rapid and lethal metabolic damage is the main mechanism of Cu(I)’s antimicrobial effect.


2006 ◽  
Vol 6 (1) ◽  
pp. 1-9
Author(s):  
V. Miska ◽  
J.H.J.M. van der Graaf ◽  
J. de Koning

Nowadays filtration processes are still monitored with conventional analyses like turbidity measurements and, in case of flocculation–filtration, with phosphorus analyses. Turbidity measurements have the disadvantage that breakthrough of small flocs cannot be displayed, because of the blindness regarding changes in the mass distributions. Additional particle volume distributions calculated from particle size distributions (PSDs) would provide a better assessment of filtration performance. Lab-scale experiments have been executed on a flocculation–filtration column fed with effluent from WWTP Beverwijk in The Netherlands. Besides particle counting at various sampling points, the effect of sample dilution on the accuracy of PSD measurements has been reflected. It was found that the dilution has a minor effect on PSD of low turbidity samples such as process filtrate. The correlation between total particle counts, total particle volume (TPV) and total particle surface is not high but is at least better for diluted measurements of particles in the range 2–10 μm. Furthermore, possible relations between floc-bound phosphorus and TPV removal had been investigated. A good correlation coefficient is found for TPV removal versus floc-bound phosphorus removal for the experiments with polyaluminiumchloride and the experiments with single denitrifying and blank filtration.


1990 ◽  
Vol 55 (1) ◽  
pp. 1-9 ◽  
Author(s):  
Zdeněk Friedl ◽  
Stanislav Böhm

The relative enthalpies of proton transfer δ ΔH0and homolytic bond strengths δDH0(B-H+) were calculated by the MNDO method for the sp and ap conformers of 4-flurobutylamine. The data obtained, along with the experimental gas phase basicities, are compared with the values predicted by the electrostatic theory. It is shown that the substituent polar effects FD on the basicities of amines are predominantly due to interactions in their protonated forms (X-B-H+) and/or radical-cations (X-B+.), those in the neutral species (X-B) playing a minor part. A contribution, which is considerably more significant in the sp conformer than in the ap conformer, arises probably also from substituent effects on the homolytic bond strength DH0(B-H+.


2009 ◽  
Vol 74 (10) ◽  
pp. 1543-1557 ◽  
Author(s):  
Herman P. Van Leeuwen ◽  
Raewyn M. Town

The degree of (de)protonation of aqueous metal species has significant consequences for the kinetics of complex formation/dissociation. All protonated forms of both the ligand and the hydrated central metal ion contribute to the rate of complex formation to an extent weighted by the pertaining outer-sphere stabilities. Likewise, the lifetime of the uncomplexed metal is determined by all the various protonated ligand species. Therefore, the interfacial reaction layer thickness, μ, and the ensuing kinetic flux, Jkin, are more involved than in the conventional case. All inner-sphere complexes contribute to the overall rate of dissociation, as weighted by their respective rate constants for dissociation, kd. The presence of inner-sphere deprotonated H2O, or of outer-sphere protonated ligand, generally has a great impact on kd of the inner-sphere complex. Consequently, the overall flux can be dominated by a species that is a minor component of the bulk speciation. The concepts are shown to provide a good description of experimental stripping chronopotentiometric data for several protonated metal–ligand systems.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jonathan Brassac ◽  
Quddoos H. Muqaddasi ◽  
Jörg Plieske ◽  
Martin W. Ganal ◽  
Marion S. Röder

AbstractTotal spikelet number per spike (TSN) is a major component of spike architecture in wheat (Triticumaestivum L.). A major and consistent quantitative trait locus (QTL) was discovered for TSN in a doubled haploid spring wheat population grown in the field over 4 years. The QTL on chromosome 7B explained up to 20.5% of phenotypic variance. In its physical interval (7B: 6.37–21.67 Mb), the gene FLOWERINGLOCUST (FT-B1) emerged as candidate for the observed effect. In one of the parental lines, FT-B1 carried a non-synonymous substitution on position 19 of the coding sequence. This mutation modifying an aspartic acid (D) into a histidine (H) occurred in a highly conserved position. The mutation was observed with a frequency of ca. 68% in a set of 135 hexaploid wheat varieties and landraces, while it was not found in other plant species. FT-B1 only showed a minor effect on heading and flowering time (FT) which were dominated by a major QTL on chromosome 5A caused by segregation of the vernalization gene VRN-A1. Individuals carrying the FT-B1 allele with amino acid histidine had, on average, a higher number of spikelets (15.1) than individuals with the aspartic acid allele (14.3) independent of their VRN-A1 allele. We show that the effect of TSN is not mainly related to flowering time; however, the duration of pre-anthesis phases may play a major role.


Cells ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 9
Author(s):  
Kristina Ritter ◽  
Jan Christian Sodenkamp ◽  
Alexandra Hölscher ◽  
Jochen Behrends ◽  
Christoph Hölscher

Anti-inflammatory treatment of chronic inflammatory diseases often increases susceptibility to infectious diseases such as tuberculosis (TB). Since numerous chronic inflammatory and autoimmune diseases are mediated by interleukin (IL)-6-induced T helper (TH) 17 cells, a TH17-directed anti-inflammatory therapy may be preferable to an IL-12-dependent TH1 inhibition in order to avoid reactivation of latent infections. To assess, however, the risk of inhibition of IL-6-dependent TH17-mediated inflammation, we examined the TH17 immune response and the course of experimental TB in IL-6- and T-cell-specific gp130-deficient mice. Our study revealed that the absence of IL-6 or gp130 on T cells has only a minor effect on the development of antigen-specific TH1 and TH17 cells. Importantly, these gene-deficient mice were as capable as wild type mice to control mycobacterial infection. Together, in contrast to its key function for TH17 development in other inflammatory diseases, IL-6 plays an inferior role for the generation of TH17 immune responses during experimental TB.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Natalie Ben Abu ◽  
Philip E. Mason ◽  
Hadar Klein ◽  
Nitzan Dubovski ◽  
Yaron Ben Shoshan-Galeczki ◽  
...  

AbstractHydrogen to deuterium isotopic substitution has only a minor effect on physical and chemical properties of water and, as such, is not supposed to influence its neutral taste. Here we conclusively demonstrate that humans are, nevertheless, able to distinguish D2O from H2O by taste. Indeed, highly purified heavy water has a distinctly sweeter taste than same-purity normal water and can add to perceived sweetness of sweeteners. In contrast, mice do not prefer D2O over H2O, indicating that they are not likely to perceive heavy water as sweet. HEK 293T cells transfected with the TAS1R2/TAS1R3 heterodimer and chimeric G-proteins are activated by D2O but not by H2O. Lactisole, which is a known sweetness inhibitor acting via the TAS1R3 monomer of the TAS1R2/TAS1R3, suppresses the sweetness of D2O in human sensory tests, as well as the calcium release elicited by D2O in sweet taste receptor-expressing cells. The present multifaceted experimental study, complemented by homology modelling and molecular dynamics simulations, resolves a long-standing controversy about the taste of heavy water, shows that its sweet taste is mediated by the human TAS1R2/TAS1R3 taste receptor, and opens way to future studies of the detailed mechanism of action.


2021 ◽  
Vol 52 (2) ◽  
pp. 792-803
Author(s):  
Marit Buhaug Folstad ◽  
Eli Ringdalen ◽  
Halvard Tveit ◽  
Merete Tangstad

AbstractThis work investigates the phase transformations in silica (SiO2) during heating to a target temperature between 1700 °C and 1900 °C and the effect of SiO2 polymorphs on the reduction reaction 2SiO2 + SiC = 3SiO + CO in silicon production. Different heating rates up to target temperature have been used to achieve the different compositions of quartz, amorphous silica and cristobalite. The different heating rates had a minor effect on the final composition, and longer time at temperatures > 1400 °C were necessary to achieve greater variations in the final composition. Heating above the melting temperature gave more amorphous silica and less cristobalite, as amorphous silica also may form from β-cristobalite. Isothermal furnace experiments were conducted to study the extent of the reduction reaction. This study did not find any significant difference in the effects of quartz, amorphous silica or cristobalite. Increased temperature from 1700 °C to 1900 °C increased the reaction rate.


2019 ◽  
Vol 35 (S1) ◽  
pp. 16-16
Author(s):  
Orla Maguire ◽  
Laura McCullagh ◽  
Cara Usher ◽  
Michael Barry

IntroductionThere is ongoing debate as to whether conventional pharmacoeconomic evaluation (PE) methods are appropriate for orphan medicinal products (OMPs). The National Centre for Pharmacoeconomics (NCPE) in Ireland has a well-defined process for conducting pharmacoeconomic evaluations of pharmaceuticals, which is the same for OMPs and non-OMPs. The objective of this study was to identify whether supplementary criteria considered in the pharmacoeconomic evaluation of OMPs would affect final reimbursement recommendations.MethodsA literature search was conducted to identify criteria. Orphan drug pharmacoeconomic evaluations completed by the NCPE between January 2015 and December 2017 were identified and supplementary criteria, where feasible, were applied.ResultsFourteen pharmacoeconomic evaluations were included in the study. Three criteria that could feasibly be applied to the NCPE evaluation process were identified, all three of which essentially broadened the economic perspective of the pharmacoeconomic evaluation. Higher cost-effectiveness threshold: Despite being arbitrarily raised from EUR 45,000/QALY to EUR 100,000/QALY, only one orphan drug demonstrated cost-effectiveness at this higher threshold. Weighted QALY gain: here, a weighted gain of between one and three is applied to drugs demonstrating QALY gains between 10 and 30, respectively. No OMPs included in the study showed a QALY gain of more than 10. Thirteen demonstrated QALY gains less than 10 and one could not be evaluated. Societal perspective: six submissions incorporated societal perspective as a scenario analysis. Despite incremental cost-effectiveness ratios (ICERs) being reduced between 4 percent and 58 percent, only two OMPs demonstrated cost-effectiveness at the higher threshold (EUR 100,000/QALY).ConclusionsApplication of supplementary criteria to the pharmacoeconomic evaluation of OMPs had a minor effect on three products assessed. However, for the majority, the final cost-effectiveness outcomes remained the same. The study highlights that other criteria are being considered in the decision to reimburse.


2018 ◽  
Vol 37 (6) ◽  
pp. 587-595
Author(s):  
Zhandong Wan ◽  
Wei Guo ◽  
Qiang Jia ◽  
Lang Xu ◽  
Peng Peng

AbstractDP980 steels were joined using fiber laser welding. The welded joint was characterized in terms of hardness distribution and tensile behavior at room temperature, 150 ℃, and 300 ℃, respectively. The fine-grained martensite in supercritical heat affected zone (HAZ) resulted in the highest hardness (428 Hv), while the tempered martensite contributed to the hardness decreasing (‒31 Hv). Both the ultimate tensile strength and yield strength of the base metal and welded joint decreased at 150 ℃, and then increased at 300 ℃ due to dynamic strain aging (DSA). The welded joint exhibited slightly higher yield strength and lower elongation at all the test temperatures compared to base metal due to the hardened fusion zone. The energy absorption reduced slightly with increasing temperature both for base metal and welded joint, and the weld posed a minor effect on the energy absorption. Deformation was one of the requirements for DSA effect. DSA enhanced the hardness of base metal (+78 Hv) and softened zone (+53 Hv). HAZ was not softened enough to become the weakest position during tensile test.


Sign in / Sign up

Export Citation Format

Share Document