scholarly journals Thermal Study and Emission Characteristics of Rice Husk Using TG-MS

Materials ◽  
2021 ◽  
Vol 14 (20) ◽  
pp. 6203
Author(s):  
José Ignacio Arranz ◽  
María Teresa Miranda ◽  
Irene Montero ◽  
Francisco José Sepúlveda

Rice husks are a by-product that is generated in large quantities in Spain. However, they are not used efficiently. One of their possible applications is its thermal use in power generation equipment. For that purpose, it is important to know the characteristics of rice husks and their thermal behavior, as well as their possible pollutant emission to the atmosphere with respect to its thermal use as a biofuel. In this work, the thermal characteristics of rice husks and their thermal behavior were studied by using thermogravimetry and mass spectroscopy for two different atmospheres (oxidizing and inert). This way, the thermal profiles and the main characteristics were studied, as well as the emission of possible pollutants to the atmosphere, such as CO2, CH4, NO2, NH3, SO2, and H2S. Moreover, three different methods (FWO, KAS, and Starink) were used to carry out a thermal analysis, in order to obtain the main thermal parameters such as activation energy. The results of the analysis predicted that rice husks could be used as biofuel in industrial thermal equipment based on its acceptable calorific value, good thermal characteristics, and low gas emissions both in oxidizing and inert atmosphere (although they have a high ash content).

2021 ◽  
Vol 9 (3) ◽  
pp. 282
Author(s):  
Fonny Rianawati ◽  
Zainal Abidin ◽  
Muhammad Naparin

This study aims to conduct a study of the quality value of briquettes made from mixing straw and rice husks which include a flame test and combustion rate which is expected to be used to educate people around the forest by providing innovation and technology regarding the use of post-harvest waste. The results showed that the value of the quality of briquettes made from variations in the mixing of straw and rice husks including the flame test of the combustion rate obtained results, for treatment A (100% straw) of 0.68 gr/minute, treatment B (100% husk) of 0 ,57 gr/minute, treatment C (Husk 75% + Straw 25%) was 0.40 gr/minute, treatment D (Husk 25% + Straw 75%) was 0.46 r/minute and treatment E (Husk 50% + Straw 50%) of 0.43 gr/minute. The value of the flame to boiling time for treatment A = 38.62 minutes, treatment B = 31.05, treatment C = 23.22 minutes, treatment D = 36.05 and treatment E = 27.95 minutes. Density values of all treatments, and the water content for treatment B and treatment C can meet SII. While other parameters: ash content, volatile matter, bound carbon and calorific value still cannot meet the standards, so it is recommended to carry out further research with other variations of treatment, in order to obtain briquettes with quality that can meet the standards.


2020 ◽  
Vol 15 (1) ◽  
pp. 38-44
Author(s):  
Ana Dewita ◽  
M. Faisal ◽  
Asri Gani

The charcoal produced from oil palm empty fruit bunches pyrolysis can be utilized as environmentally friendly alternative fuel briquettes. This research aimed at improving the quality of these EFB briquettes using brown algae adhesive (alginate). The adhesive was added at 2.5%, 5%, 7.5%, and 10%. Proximate analysis was then performed on EFB and the brown algae. The best quality briquettes were obtained by adding brown algae adhesive at 2.5% concentrate, which resulted in a calorific value of 21,405 J/g. Other characteristics such as moisture content, ash content, volatile matter, and fixed carbon were found to be 7.4%, 4.9%, 79%, and 8.7%, respectively. In addition, the thermal characteristics such as density, flash point, and burning time were found at 0.96 g/cm3, 5.1 second, and 300 minutes, respectively.


2020 ◽  
Vol 5 (2) ◽  
pp. 23-28
Author(s):  
Edi Widodo ◽  
Mohammad Dani Iswanto ◽  
Prantasi Harmi Thahjanti ◽  
Rachmat Firdaus

Rice mills produce abundant husk waste. The husks are used as a mixing material for bricks because they are flammable and have capability to form hot coals with high calor. This potential is used to develop the husks into briquettes. This study used rice husks (oriza sativa) and flamboyant pods (Royal ponciana) as the main ingredients for forming briquettes. This pods was chosen because had not optimally used. The composition of rice husk briquettes and flamboyant fruit skins made of 16.7%: 83.3%, 33.4%: 66.6%, 50%: 50%, 66.6%: 33.4%, 83.3 %: 16.7%. The briquettes formed were measured the calorific value, mass reduction using the TGA (Thermogravimetric analysis) thermal measurement method, and measured the values ​​of moisture, ash, volatile, and fixed carbon content. The results of the measurement of the lowest calorific value in rice husk briquettes were 83.3% with a value of 4,551 cal / gram, while the highest value was 5,945 cal / gram in rice husk briquettes percentage of 16.7%. The result of TGA measurement of the largest mass reduction was briquettes with a percentage of husk 83.3% having the highest mass reduction of 11.1 mg. The results of the measurement of water content obtained 7.04%, 24.70% volatile, 9.98% ash content, 58.28% fixed carbon


2019 ◽  
Vol 4 (2) ◽  
pp. 129-134
Author(s):  
Kuntang Winangun ◽  
Fauzan Masykur ◽  
M. Malyadi ◽  
Rendy Cahyono

Biomass briquettes are an alternative to fossil energy. Biomass briquette material has a large capacity and is easily available in the surrounding environment. The purpose of this study was to determine the value of water content, value of ash content, value of volatile matter content, value of bound carbon content and calorific value of mixed briquettes of peanut shell and rice husk with three different percentages. First a mixture of 30% peanut shell and 70% rice husk, second a mixture of 50% peanut shell and 50% rice husk, third a mixture of 70% peanut shell and 30% rice husk. From the results of the research data, it can be seen that the lowest water content is in a mixture of 70% peanut shells and 30% rice husks of 14.225. The lowest value of ash content was found in a mixture of 70% peanut shell and 30% rice husk at 13.873%. The lowest value of volatile substances was found in a mixture of 30% peanut shell and 70% rice husk at 36.712%. The highest value of bound carbon content was found in a mixture of 30% peanut shell and 70% rice husk at 27.028% and the highest calorific value was found in a mixture of 70% peanut shell and 30% rice husk at 5834.60 cal / g.


2020 ◽  
Vol 13 (2) ◽  
pp. 105-109
Author(s):  
E. S. Dremicheva

This paper presents a method of sorption using peat for elimination of emergency spills of crude oil and petroleum products and the possibility of energy use of oil-saturated peat. The results of assessment of the sorbent capacity of peat are presented, with waste motor oil and diesel fuel chosen as petroleum products. Natural peat has been found to possess sorption properties in relation to petroleum products. The sorbent capacity of peat can be observed from the first minutes of contact with motor oil and diesel fuel, and significantly depends on their viscosity. For the evaluation of thermal properties of peat saturated with petroleum products, experimental studies have been conducted on determination of moisture and ash content of as-fired fuel. It is shown that adsorbed oil increases the moisture and ash content of peat in comparison with the initial sample. Therefore, when intended for energy use, peat saturated with petroleum products is to be subjected to additional drying. Simulation of net calorific value has been performed based on the calorific values of peat and petroleum products with different ratios of petroleum product content in peat and for a saturated peat sample. The obtained results are compared with those of experiments conducted in a calorimetric bomb and recalculated for net calorific value. A satisfactory discrepancy is obtained, which amounts to about 12%. Options have been considered providing for combustion of saturated peat as fuel (burnt per se and combined with a solid fuel) and processing it to produce liquid, gaseous and solid fuels. Peat can be used to solve environmental problems of elimination of emergency spills of crude oil and petroleum products and as an additional resource in solving the problem of finding affordable energy.


2010 ◽  
Vol 7 (4) ◽  
pp. 1254-1257 ◽  
Author(s):  
K. H. Shivaprasad ◽  
M. M. Nagabhushana ◽  
C. Venkataiah

Ash, an inorganic matter present in coal is amenable for dissolution using suitable reagents. Thus the dissolution of ash and its subsequent removal reduces the release of many toxic elements into the environment by coal based industries. Removal of ash also enhances the calorific value. In the present investigation an attempt has been made to reduce the ash content of raw coal obtained from nearest thermal power by using hydrochloric acid, sulfuric acid and sodium hydroxide. A series of leaching experiments were conducted on coal of different size fractions by varying the parameters like concentration, temperature and time of leaching. The results indicate that it is possible to remove nearly 75% of ash from coal sample by leaching.


2021 ◽  
Vol 6 (1) ◽  
Author(s):  
Reza Wahyudi ◽  
Muhammad Ivanto ◽  
Murti Juliandari

Dependence on the provision of electricity using fossil fuels is a major energy supply problem in Indonesia. Therefore, it is necessary to provide new and renewable alternative fuels that are effective, efficient, and environmentally friendly. One of the alternative fuels is bagasse biomass. The purpose of this study was to determine the amount of bagasse produced by sellers of sugarcane juice drink in Pontianak City, in order to determine the estimated value of bagasse. The research method used was direct data collection and laboratory testing . Based on the results of the study, the number of vendors of sugarcane juice beverages producing bagasse was 169. Of this amount, produce bagasse that can reach 1,030.9 kg/day. Based on the test results, the estimated moisture content of bagasse was 3.28%, ash content was 0.77%, and carbon remained at 7.65%. So, if converted with the test results of the calorific value of bagasse and made into briquettes bagasse (bio briquettes), which is 19,648 kJ/kg with a density of 0.416 kg/m3, then converted into a potential calorific value of 242,849,280 J/year.


Sign in / Sign up

Export Citation Format

Share Document