scholarly journals Production and Physical–Mechanical Characterization of Peat Moss (Sphagnum) Insulation Panels

Materials ◽  
2021 ◽  
Vol 14 (21) ◽  
pp. 6601
Author(s):  
Günther Kain ◽  
Marco Morandini ◽  
Angela Stamminger ◽  
Thomas Granig ◽  
Eugenia Mariana Tudor ◽  
...  

Peat moss (sphagnum) is a commonly used sealant, fill, and insulation material in the past. During the efforts to rewet drained moors due to ecological considerations, the technical use of peat moss (sphagnum farming) again became the focus of attention. In the framework of this investigation, insulation panels consisting of peat moss, bound with urea formaldehyde, were produced. Panels manufactured in a wet process and mats bound with textiles were also fabricated. The specimens’ thermal conductivity, water vapor diffusion resistance, modulus of rupture, modulus of elasticity, internal bond, compression resistance, water absorption, and thickness swelling were measured. Physical–mechanical properties were adequate with the resin-bound panels, but not with wet process panels. Moss mats had good characteristics for cavity insulation purposes. The thermal conductivity of the moss panels and mats was found to be lowest with a density of 50 kg/m³, accounting for 0.04 W/m·K. The results show that peat moss is a promising resource for production insulation panels, because their thermal conductivity and mechanical stability are comparable to other insulation materials.

2010 ◽  
Vol 434-435 ◽  
pp. 689-692 ◽  
Author(s):  
Xing Shi ◽  
Shi Chao Zhang ◽  
Yu Feng Chen ◽  
Mao Qiang Li ◽  
Shi Xi Ouyang ◽  
...  

Porous SiO2 insulation material was made by wet process. Fibrous xonotlite crystal and glass fiber were used as reinforced fibers, and graphite, zirconia and titania powders were added as infrared scattering materials into the porous SiO2 insulation material. The density of the SiO2 insulation material was about 0.3g/cm3. The porosity was about 85%, and the pore size was mainly ranged from 20 to 60 nm in diameter. Heat transfer due to solid conduction and gas convection was reduced greatly because of the existence of larger amount of nano pores. Thermal radiation was partly blocked by the infrared scattering powders. Thermal conductivity of the porous SiO2 insulation material added with graphite powder as infrared scattering powder can reach as low as 0.04W/m.K at 700°C. The type and amount of added infrared scattering powders had important influence on the thermal performances of insulation materials.


Energies ◽  
2021 ◽  
Vol 14 (7) ◽  
pp. 1844
Author(s):  
Bożena Orlik-Kożdoń

The following article presents comprehensive research results for the insulation material based on polystyrene wastes. The presented product has the form of plates to be applied for thermal insulation of external envelopes from the inside. The laboratory tests were focused on the determination of basic technical parameters for this type of materials, i.e., thermal conductivity coefficient, diffusion resistance coefficient, reaction to fire, material sorption, and strength characteristics. For the recycling material, the obtained thermal conductivity value was 0.055 [W/mK]. The diffusion resistance coefficient was 5 [–], and therefore, this component has been qualified to a group of solutions that allow for interstitial condensation in the envelope. For the developed product, in situ tests were carried out on the actual wall system in a historical building. Based on the research, temperature and humidity profiles were obtained in the selected planes of the envelope. The performance of this material in real conditions was observed in relation to the reference product, i.e., lightweight cellular concrete (commonly used as thermal insulation from the inside). For the conducted in situ research, statistical inference was applied, which included the verification of the hypothesis-recycling panels in wall systems follow a trend of changes similar to that of slabs made of lightweight cellular concrete (a group of materials that allows for interstitial condensation). The proposed method of using secondary raw materials in insulation products allows us to obtain a product with high technical parameters that do not differ in quality from new components.


2019 ◽  
Vol 2019 ◽  
pp. 1-10 ◽  
Author(s):  
Basim Abu-Jdayil ◽  
Waseem Hittini ◽  
Abdel-Hamid Mourad

This study is aimed at developing a thermoplastic composite based on date pit powder waste for use as a thermal insulator in building industries. Date pits are the by-product of date stoning, either for the production of pitted dates or for the manufacture of date paste. The date pit powder (DPP) used in this study was obtained from the UAE University farm in Al Foah, UAE. DPP waste contents ranging from 0 wt.% to 50 wt.% were used to prepare the DPP-polystyrene composite. Date pit powder was mixed with polystyrene using a melt extruder, and then the mixture was transferred to the hot press to produce the final sample. The thermal and physical characteristics of the produced composites were measured experimentally and analyzed theoretically in terms of date pit and polystyrene properties. The characterized properties of the DPP-polystyrene composites, namely, density, thermal conductivity, water retention, thermal stability, and microstructure, showed that a stable composite material with insulation and construction capacity can be formed by the addition of date pit powder to the polystyrene matrix. The theoretical modeling of the measured thermal conductivity and the scanning electron microscope (SEM) monographs supported the hypothesis of date pit agglomeration in the composite matrix. The prepared composites showed low thermal conductivity (0.0515-0.0562 W/m K at 25°C) and very low density (457-630 kg/m3), thus demonstrating their potential for use as a thermal insulator for building materials. In addition, replacing one-third of the classical construction wall content with DPP-polystyrene composite showed promise for constructive applications as a thermal insulator with 85% reduction in the overall thermal conductivity. Indeed, these properties are similar to those of other conventional insulating materials. This will lead to produce an inexpensive insulation material that exploits a common waste product in date fruit-producing countries.


Forests ◽  
2020 ◽  
Vol 11 (5) ◽  
pp. 560
Author(s):  
Manuel Ferrandez-Villena ◽  
Clara Eugenia Ferrandez-Garcia ◽  
Teresa Garcia-Ortuño ◽  
Antonio Ferrandez-Garcia ◽  
Maria Teresa Ferrandez-Garcia

Wood-cement panels are becoming increasingly widely used as prefabricated building materials. In order to increase the use of renewable resources as materials for industrial applications, the use of alternative plant fibres has been gaining interest. Additionally, it is assumed that new or better board properties can be achieved due to the different chemical and mechanical properties of such alternative sources of fibres. In south-eastern Spain, the Canary Islands palm (Phoenix canariensis) is widely used in urban landscaping. Plantations attacked by red palm weevils generate abundant plant waste that must be shredded and taken to authorised landfills. This paper discusses the use of particles of Canary Islands palm for manufacturing fibre panels containing 20% cement in relation to the weight of the particles, using different proportions of starch as a plasticiser. A pressure of 2.6 MPa and a temperature of 100 °C were used in their production. Density, thickness swelling, water absorption, internal bonding strength, modulus of rupture (MOR), modulus of elasticity (MOE), and thermal conductivity were studied. The mechanical tests showed that the MOR and MOE values increased with longer setting times, meaning that the palm particles were able to tolerate the alkalinity of the cement. The board with 5% starch had a MOR of 15.76 N·mm−2 and a MOE of 1.872 N·mm−2 after 28 days. The boards with thicknesses of 6.7 mm had a mean thermal conductivity of 0.054 W·m−1·K−1. These boards achieved good mechanical properties and could be used for general use and as a thermal insulation material in building construction.


2015 ◽  
Vol 10 (2) ◽  
pp. 2663-2681
Author(s):  
Rizk El- Sayed ◽  
Mustafa Kamal ◽  
Abu-Bakr El-Bediwi ◽  
Qutaiba Rasheed Solaiman

The structure of a series of AlSb alloys prepared by melt spinning have been studied in the as melt–spun ribbons  as a function of antimony content .The stability  of these structures has  been  related to that of the transport and mechanical properties of the alloy ribbons. Microstructural analysis was performed and it was found that only Al and AlSb phases formed for different composition.  The electrical, thermal and the stability of the mechanical properties are related indirectly through the influence of the antimony content. The results are interpreted in terms of the phase change occurring to alloy system. Electrical resistivity, thermal conductivity, elastic moduli and the values of microhardness are found to be more sensitive than the internal friction to the phase changes. 


Polymers ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 319
Author(s):  
Marius Cătălin Barbu ◽  
Zeno Montecuccoli ◽  
Jakob Förg ◽  
Ulrike Barbeck ◽  
Petr Klímek ◽  
...  

Brewer’s spent grain (BSG) is the richest by-product (85%) of the beer-brewing industry, that can be upcycled in a plentiful of applications, from animal feed, bioethanol production or for removal of heavy metals from wastewater. The aim of this research is to investigate the mechanical, physical and structural properties of particleboard manufactured with a mixture of wood particles and BSG gradually added/replacement in 10%, 30% and 50%, glued with polymeric diisocyanate (pMDI), urea-formaldehyde (UF) and melamine urea-formaldehyde (MUF) adhesives. The density, internal bond, modulus of rupture, modulus of elasticity, screw withdrawal resistance, thickness swelling and water absorption were tested. Furthermore, scanning electron microscopy anaylsis was carried out to analyze the structure of the panels after the internal bond test. Overall, it was shown that the adding of BSG decreases the mechanical performance of particleboard, due to reduction of the bonding between wood and BSG particles. This decrease has been associated with the structural differences proven by SEM inspection. Interaction of particles with the adhesive is different for boards containing BSG compared to those made from wood. Nevertheless, decrease in the mechanical properties was not critical for particleboards produced with 10% BSG which could be potentially classified as a P2 type, this means application in non-load-bearing panel for interior use in dry conditions, with high dimensional stability and stiffness.


2021 ◽  
Vol 13 (14) ◽  
pp. 7945
Author(s):  
Matteo Vitale ◽  
María del Mar Barbero-Barrera ◽  
Santi Maria Cascone

More than 124 million tons of oranges are consumed in the world annually. Transformation of orange fruit generates a huge quantity of waste, largely composed of peels. Some attempts to reuse by-products derived from citrus waste have been proposed for energy production, nutrient source or pharmaceutical, food and cosmetic industries. However, their use in the building sector had not been researched. In this study, orange peels, in five different ratios, from 100% of wet peels to 75% and from 0% of dry peels to 25%, were submitted to a thermo-compression procedure. They were evaluated according to their physical (bulk density, water absorption, thickness swelling, surface soundness and thermal conductivity) and mechanical properties (bending strength and modulus of elasticity). The results showed that orange peels can be used as thermal insulation material. The addition of dried peels makes the structure of the board heterogeneous and thus increases its porosity and causes the loss of strength. Hence, the board with the sole use of wet peel, whose thermal conductivity is 0.065 W/mK while flexural strength is 0.09 MPa, is recommended.


2007 ◽  
Vol 546-549 ◽  
pp. 1581-1584 ◽  
Author(s):  
Jiu Peng Zhao ◽  
Deng Teng Ge ◽  
Sai Lei Zhang ◽  
Xi Long Wei

Silica aerogel/epoxy composite, a kind of efficient thermal insulation material, was prepared by doping silica aerogel of different sizes into epoxy resin through thermocuring process. The results of thermal experiments showed that silica aerogel/epoxy composite had a lower thermal conductivity (0.105W/(m·k) at 60 wt% silica aerogel) and higher serviceability temperature (Martens heat distortion temperature: 160°C at 20 wt% silica aerogel). In addition, the composite doping larger size (0.2-2mm) of silica aerogel particle had lower thermal conductivity and higher Martens heat distortion temperature. Based on the results of SEM and FT-IR, the thermal transfer model was established. Thermal transfer mechanism and the reasons of higher Martens heat distortion temperature have been discussed respectively.


2021 ◽  
pp. 0021955X2110626
Author(s):  
Tae Seok Kim ◽  
Yeongbeom Lee ◽  
Chul Hyun Hwang ◽  
Kwang Ho Song ◽  
Woo Nyon Kim

The effect of perfluoroalkane (PFA) on the morphology, thermal conductivity, mechanical properties and thermal stability of rigid polyurethane (PU) foams was investigated under ambient and cryogenic conditions. The PU foams were blown with hydrofluorolefin. Morphological results showed that the minimum cell size (153 μm) was observed when the PFA content was 1.0 part per hundred polyols by weight (php). This was due to the lower surface tension of the mixed polyol solution when the PFA content was 1.0 php. The thermal conductivity of PU foams measured under ambient (0.0215 W/mK) and cryogenic (0.0179 W/mK at −100°C) conditions reached a minimum when the PFA content was 1.0 php. The low value of thermal conductivity was a result of the small cell size of the foams. The above results suggest that PFA acted as a nucleating agent to enhanced the thermal insulation properties of PU foams. The compressive and shear strengths of the PU foams did not appreciably change with PFA content at either −170°C or 20°C. However, it shows that the mechanical strengths at −170°C and 20°C for the PU foams meet the specification. Coefficient of thermal expansion, and thermal shock tests of the PU foams showed enough thermal stability for the LNG carrier’s operation temperature. Therefore, it is suggested that the PU foams blown by HFO with the PFA addition can be used as a thermal insulation material for a conventional LNG carrier.


2021 ◽  
Author(s):  
Maria C. Iglesias ◽  
Philip S. McMichael ◽  
Osei A. Asafu-Adjaye ◽  
Brian K. Via ◽  
Maria S. Peresin

Abstract Wood-based panels are commonly used as building materials for interior and exterior purposes. Their production and utilization have increased over the past decades due to the useful properties they present. Adhesive-bonded products make up to 80% of the wood alternatives on the global market, and of that, urea-formaldehyde (UF) makes up approximately 81% of the resins used. Formaldehyde-based resins are used due to their effectiveness and low cost, as well as their ease of application and lack of color. Nevertheless, their main disadvantages are the lack of tackiness and the emission of formaldehyde over time. To improve UF performance, the utilization of microfibrillated cellulose, has been demonstrated to be effective. However, more understanding on the mechanisms of the interactions is of relevant importance. In this work, we studied interfacial interactions between UF with bleached (BCNF) and unbleached (LCNF) cellulose nanofibrils using Quartz Crystal Microbalance with dissipation monitoring (QCM-D) technique observing the superior performance of lignin-containing CNF. Additionally, the surface free energies were investigated using Contact Angle Measurements (CA) showing a decrease of the values mainly when utilizing LCNF, which was later correlated with the wettability properties of the particle boards (PBs). PBs with different adhesive/CNF formulations were produced showing larger improvements when adding LCNF in terms of modulus of elasticity (MOE), modulus of rupture (MOR), and internal bonding (IB). To gain a better understanding on the interactions between CNF and UF, CNF was fully characterized in terms of morphology, chemical composition, charge density, as well as thermal and colloidal stability.


Sign in / Sign up

Export Citation Format

Share Document