scholarly journals Utilization of Waste Glass in Autoclaved Silica–Lime Materials

Materials ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 549
Author(s):  
Katarzyna Borek ◽  
Przemysław Czapik

This paper aims to investigate the possibility of using waste glass of different colours as a complete substitute for quartz sand in autoclaved silica–lime samples. On the one hand, this increases the possibility of recycling waste glass; on the other hand, it allows obtaining autoclaved materials with better properties. In this research, reference samples with quartz sand (R) and white (WG), brown (BG), and green (GG) waste container glass were made. Parameters such as compressive strength, bulk density, and water absorption were examined on all samples. The samples were examined using a scanning electron microscope with an energy dispersive spectroscopy detector (SEM/EDS) and subjected to X-ray diffraction (XRD) analysis. The WG samples showed 187% higher compressive strength, BG by 159%, and GG by 134% compared to sample R. In comparison to the reference sample, volumetric density was 16.8% lower for sample WG, 13.2% lower for BG, and 7.1% lower for GG. Water absorption increased as bulk density decreased. The WG sample achieved the highest water absorption value, 15.84%. An X-ray diffraction analysis confirmed the presence of calcite, portlandite, and tobermorite phases. Depending on the silica aggregate used, there were differences in phase composition linked to compressive strength. Hydrated calcium silicates with varying crystallisation degrees were visible in the microstructure image.

2020 ◽  
Vol 70 (6) ◽  
pp. 596-602
Author(s):  
P.K. Mehta ◽  
A. Kumaraswamy ◽  
V. K. Saraswat ◽  
Praveen Kumar B.

Utilisation of propellant waste in fabrication of bricks is not only used as efficient waste disposal method but also to get better functional properties. In the present study, high energy propellant (HEP) waste additive mixed with soil and fly ash in different proportions during manufacturing of bricks has been investigated experimentally. X-ray diffraction (XRD) studies were carried out to confirm the brick formation and the effect of HEP waste. Ceramic bricks were fabricated with HEP waste additive in proper proportions i.e. 0.5 wt %, 1.0 wt %, 1.5 wt %, 2.0 wt %, 2.5 wt %, 3 wt %, 3.5 wt %, and 4 wt % and then evaluated for water absorption capability and compressive strength. Compressive strength of 6.7 N/mm2, and Water absorption of 22 % have been observed from modified fired bricks impregnated with HEM waste additive. Scanning electron microscopy (SEM) studies were carried out to analyze the effect of HEP waste additive on pore formation and distribution in the bricks. Further, the heat resulting from decomposition of propellants can cause a decrease in the energy required of baking process. The process of manufacturing of bricks with HEP waste additive is first of its kind till date.


2019 ◽  
Vol 296 ◽  
pp. 173-179 ◽  
Author(s):  
Matěj Lédl ◽  
Lucie Galvánková ◽  
Rostislav Drochytka

This paper is focused on the effect of treatment of fly ash after selective non-catalytic reduction (SNCR) with tannin on autoclaved aerated concrete (AAC) production in order to reduce or stop ammonia leakage from the fresh mixture due to its alkalinity. A pure form of tannin and a tannin-based product „Farmatan“ were used as a treatment in dosage ranging from 0,5 g – 3 g of agent per 1 kg of fly ash. Efficient dosage was determined at 2 wt.% of fly ash by the speed of an indicator change due to gaseous ammonia diluted in water. The rheological properties of fresh mixtures were observed by consistency test in Viskomat showing that Farmatan causes delay of hydration. The results of bulk density and compressive strength testing revealed that Farmatan causes an increase of bulk density and at higher amount decreases the compressive strength because of thermal crack formation due to combined effect of delayed hydration and thixotropy. Using x-ray diffraction (XRD) analysis there were no differences in phase composition observed.


2017 ◽  
Vol 888 ◽  
pp. 37-41
Author(s):  
Hasrul Yahya ◽  
Mohd Roslee Othman ◽  
Zainal Arifin Ahmad

Porcelain balls as grinding media are produced by firing process of clay, quartz and feldspar mixtures. This application need high technological properties such as high compressive strength and hardness, wear resistance, low water absorption and excellent chemical resistance. These properties are associated with higher firing temperatures. The porcelain balls were prepared by mixing 30 wt.% clay, 40 wt.% feldspar and 30 wt.% quartz. The samples were sintered at 1200°C, 1230°C, 1250°C, 1270°C and 1300°C for 2 hours with heating rate of 3°C/min. Both green powder and fired samples were characterized by X-ray diffraction (XRD), X-ray fluorescence (XRF) and scanning electron microscopy (SEM).The properties of the fired samples were evaluated by compressive strength, hardness, shrinkage, water absorption, bulk density, and porosity measurement. Increasing of compressive strength, hardness and density are associated with increasing of firing temperatures. Porcelain balls PB1 and PB2 can be produced as grinding media with optimum mechanical and physical properties at firing temperature 1270°C and 1250°C, respectively.


2012 ◽  
Vol 626 ◽  
pp. 280-288 ◽  
Author(s):  
Jariah Mohd Juoi ◽  
Dilip Arudra ◽  
Zulkifli Mohd Rosli ◽  
A.R. Toibah ◽  
Siti Rahmah Shamsuri ◽  
...  

Incineration of scheduled waste and landfilling of the incineration residue (Bottom Slag) is extensively practised in Malaysia as a treatment method for scheduled waste. Land site disposal of Bottom Slag (BS) may lead to environmental health issues and reduces the availability of land to sustain the nations development. This research aims in producing Glass Composite Material (GCM) incorporating BS and Soda Lime Silicate (SLS) waste glass as an alternative method for land site disposal method and as an effort for recycling SLS waste glass .SLS waste glass originates from the urban waste and has been a waste stream in most of the nation whereby the necessity for recycling is in high priority.The effect of BS waste loading on the GCM is studied.Batches of powder mixture is formulated with 30 wt% to 70 wt % of BS powder and SLS waste glass powder for GCM sintering.The powder mixtures of BS and SLS waste glass is compacted by uniaxial pressing method and sintered at 800C with heating rate of 2C/min and 1 hour soaking time. Physical analysis of bulk density, apparent porosity, and water absorption is perfomed according to ASTM C-373 standard. Mechanical testing of microhardness vickers according to ASTM C1327 and Modulus of Rupture (MOR) according to ISO 10545-4 is conducted. Microstructural analysis is carried out using Scanning Electron Microscope and phase analysis by X-ray diffraction method.Phases identified are Anorthite sodian,Quartz,Hematite and Diopside from X-ray diffraction analysis. Higher BS waste loading shows weak physical and mechanical properties .GCM from batch formulation of 30 wt % BS and 70 wt% SLS waste glass has projected optimized physical and mechanical properties. It is observed this batch has projected lowest water absorption percentage of 1.17 % , lowest porosity percentage of 2.2 %, highest bulk density of 1.88 g/cm3and highest MOR of 70.57 Mpa and 5.6 GPa for Vickers Microhardness.


Elkawnie ◽  
2020 ◽  
Vol 6 (2) ◽  
pp. 302
Author(s):  
Muttaqin Hasan ◽  
Teuku Budi Aulia ◽  
Fido Yurnalis

Abstract: Inong Balee Fort is one of the Islamic Kingdom of Aceh heritage built in 1599 by Admiral Malahayati but several parts of the fortress wall have currently been damaged and the stone removed. Indonesian Government plans to restore the fort and this makes it necessary to examine the characteristics of the fortress mortar with a focus on the chemical composition and mineralogical elements. Therefore, mortar powder samples obtained from the fort walls were tested through X-Ray Diffraction (XRD) and the results showed the main composition of mortar is CaCO3 and SiO2 from a mixture of lime and sand while the others are P2O5, MgCO3, and Al2O3. Meanwhile, two mortar mixtures including 1 lime: 2 sand and 1 cement: 2 lime: 3 sand were designed for restoration purposes and they were both found by the XRD analysis results to have a diffraction pattern similar to Inong Balee Fort mortar. However, mortar with 1 lime: 2 sand has a very low compressive strength subsequently it does not meet the specifications of the SNI 6882:2014 and ASTM C270-19a while mortar with 1 cement: 2 lime: 3 sand has a compressive strength that meets the specifications. Therefore, a mortar with 1 cement: 2 lime: 3 sand is recommended to be used for the restoration of Inong Balee Fort.Abstrak: Benteng Inong Balee merupakan salah satu peninggalan Kerajaan Islam Aceh yang dibangun pada tahun 1599 oleh Laksamana Malahayati. Saat ini banyak bagian dinding pasangan batu benteng tersebut sudah rusak dan batunya sudah terlepas dari ikatan mortar. Pemerintah Republik Indonesia berencana melakukan restorasi benteng tersebut. Oleh karena itu perlu diteliti karakteristik mortar pengikat dari pasangan batu benteng tersebut, berupa kandungan senyawa kimia dan mineralnya. Metode yang digunakan untuk karakterisasi adalah dengan melakukan pengujian X-Ray Diffraction (XRD) terhadap bubuk sampel mortar yang diambil dari dinding benteng. Hasil pengujian menunjukkan bahwa komposisi utama mortar pengikatnya adalah CaCO3 dan SiO2 yang menunjukkan bahwa mortar tersebut terbuat dari campuran kapur dan pasir. Disamping itu juga terdapat kandungan senyawa P2O5, MgCO3 dan Al2O3. Selanjutnya untuk keperluan restorasi didesain 2 campuran mortar, yaitu mortar dengan campuran 1 kapur : 2 pasir dan mortar dengan campuran 1 semen : 2 kapur : 3 pasir. Hasil analisis XRD menunjukkan bahwa kedua campuran tersebut mempunyai pola diffraksi yang mirip dengan Benteng Inong Balee. Akan tetapi mortar dengan campuran 1 kapur : 2 pasir mempunyai kuat tekan yang sangat rendah sehingga tidak memenuhi spesifikasi Standar SNI 6882:2014 dan ASTM C270-19a, sedangkan mortar dengan campuran 1 semen : 2 kapur : 3 pasir mempunyai kuat tekan yang memenuhi spesifikasi Standar SNI 6882:2014 dan ASTM C270-19a, sehingga mortar ini disarankan digunakan untuk keperluan restorasi Benteng Inong Balee.


Materials ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4315
Author(s):  
M. Meignanamoorthy ◽  
Manickam Ravichandran ◽  
Vinayagam Mohanavel ◽  
Asif Afzal ◽  
T. Sathish ◽  
...  

In this paper, Al-Fe-Si-Zn-Cu (AA8079) matrix composites with several weight percentages of B4C (0, 5, 10, and 15) were synthesized by powder metallurgy (PM). The essential amount of powders was milled to yield different compositions such as AA8079, AA8079-5 wt.%B4C, AA8079-10 wt.%B4C, and AA8079-15 wt.%B4C. The influence of powder metallurgy parameters on properties’ density, hardness, and compressive strength was examined. The green compacts were produced at three various pressures: 300 MPa, 400 MPa, and 500 MPa. The fabricated green compacts were sintered at 375 °C, 475 °C, and 575 °C for the time period of 1, 2 and 3 h, respectively. Furthermore, the sintered samples were subjected to X-ray diffraction (XRD) analysis, Energy Dispersive Analysis (EDAX), and Scanning Electron Microscope (SEM) examinations. The SEM examination confirmed the uniform dispersal of B4C reinforcement with AA8079 matrix. Corrosion behavior of the composites samples was explored. From the studies, it is witnessed that the rise in PM process parameters enhances the density, hardness, compressive strength, and corrosion resistance.


Buildings ◽  
2019 ◽  
Vol 9 (11) ◽  
pp. 232 ◽  
Author(s):  
Anna Stepien ◽  
Magdalena Leśniak ◽  
Maciej SITARZ

Far-reaching technological progress, manufacturing, and rapidly advancing globalization dictate new conditions for the development and changes in the construction industry. Valorization of by-products and the use of secondary materials in the production of building materials have attracted a lot of attention. Silicate materials were assessed on the basis of their compressive property. An orthogonal compositional plan type 3k (with k = 2), that is, a full two-factor experiment was applied in order to carry out the compressive strength and bulk density tests. Glass sand was added to the silicate mass as a modification. The results show that the compressive strength was higher than that of traditional bricks. Scanning electron microscopy coupled with energy dispersive spectrometry SEM/EDS was used to study the microstructure, whereas the XRD analysis was applied to examine the structures. Laboratory tests were performed on samples with dimensions of 50 × 50 × 50 mm. The results show the bulk density increase to the value of 1.75 kg/dm3, which increases the acoustic performance of the new products. The results of the modifications also indicate changes in the structure of the new bricks. The reference sample contained α-quartz, zeolite, tobermorite 9A, and calcium aluminum silicate (Ca2Al4Si12O32), whereas the samples modified with glass sand, the presence of phases such as α-cristobalite, natrolite, tobermorite 11A, gyrolite, and analcite was recorded.


2018 ◽  
pp. 13-22
Author(s):  
Jiraporn Namchan ◽  
Nuta Supakata

The potential to use dredged sediment from the Watsongpeenong Canal and paper mill residue as the primary raw materials for producing facing bricks was studied in the laboratory. Dredged sediment and paper mill residue were chemically, mineralogically, and thermally characterized using X-ray fluorescence (XRF) and X-ray diffraction (XRD). To evaluate the effects of the contents of the paper mill residue on pore-forming, large amounts of paper mill residue, ranging from 5 to 7 % by mass, were blended with dredged sediments and fired at 700oC. The physical-mechanical properties, including dimensions and tolerances, wryness, deviation of the right angle, water absorption, compressive strength, stain, hole, rails, and cracks, as well as the microstructural properties of the facing bricks, were investigated. In addition, the heavy metals (Mn, Pb, Cd, and Cr) in the facing bricks were identified. The results indicated that the dimensions and tolerance, wryness, deviation from the right angle, water absorption, compressive strength, holes, and rails of the facing bricks with 5 % and 7 % by weight of paper mill residue were compliant with the requirements of the TIS 168-2546 standard. For stains and cracks, no batches of the facing bricks complied with the standard. Facing bricks made from 93 % dredged sediment and 7 % paper mill residue (93D+7P) obtained the highest compressive strength, with a value of 23.66 MPa. Therefore, dredged sediment and paper mill residue can be considered as suitable for use as primary raw materials in the production of facing bricks.


2019 ◽  
Vol 41 (4) ◽  
pp. 388-402
Author(s):  
Tran Thi Lan ◽  
Nguyen Anh Duong ◽  
Phan Luu Anh ◽  
Tran Thi Man

The mineral component of kaolin clay in Tung Ba commune analyzed by X-ray diffraction is composed mainly of kaolinite (24–27%), illite (26–30%) and quartz (40–44%). Chemical composition (wt%) of Tung Ba kaolin determined by X-ray fluorescence (XRF) shows SiO2 at 59.92–64.98, Al2O3: 18.95–20.82, Fe2O3: 2.28–3.95, SO3: 2.47–4.66, CaO: 0.12–0.36, MgO: 1.72–2.13 and TiO2 at 0.75–1,08. To fabricate geopolymer ceramic, kaolin clay was transformed into metakaolin with the optimal parameters of calcination: the temperature at 750°C and heating time of 120 min. Obtained metakaolin is mixed with mixtures of NaOH/Na2SiO3 (40%wt) with ratios of 0.2, 0.25, 0.33, 0.5 and NaOH molarities are 10M, 12M, 14M. Testing geopolymer ceramics after 28 days had a compressive strength of 40–196 KG/cm2, water absorption of 15.25–17.98% and density of 1.54–1.69 g/cm3, totally satisfied the Vietnamese standard for construction bricks and ceramics.


2011 ◽  
Vol 250-253 ◽  
pp. 707-710
Author(s):  
Fang Xian Li ◽  
You Zhi Chen ◽  
Qi Jun Yu ◽  
Jiang Xiong Wei

Desulfuration residues were used as aggregate to produce Non-autoclaved aerated concrete. The effects of water-hinder ratio, casting temperature on the gas forming behavior, and those of desulfuration residue content on the compressive strength and bulk density of aerated concrete were investigated. The types of the hydration products and the microstructure of Non-autoclaved aerated concrete with desulfuration residue were investigated by means of X-ray diffraction and scanning electron microscope. Results show that the optimum replacement amount was determined as 50% and at this rate the compressive strength, bulk density of Non-autoclaved aerated concrete were measured as 2.83 MPa and 543 kg/m3. The hydration products of Non-autoclaved aerated concrete with desulfuration residue are C2SH (A) and C2SH (B) along with ettringite and hydrogarnet phases.


Sign in / Sign up

Export Citation Format

Share Document