scholarly journals Marine Natural Products: A Source of Novel Anticancer Drugs

Marine Drugs ◽  
2019 ◽  
Vol 17 (9) ◽  
pp. 491 ◽  
Author(s):  
Shaden A. M. Khalifa ◽  
Nizar Elias ◽  
Mohamed A. Farag ◽  
Lei Chen ◽  
Aamer Saeed ◽  
...  

Cancer remains one of the most lethal diseases worldwide. There is an urgent need for new drugs with novel modes of action and thus considerable research has been conducted for new anticancer drugs from natural sources, especially plants, microbes and marine organisms. Marine populations represent reservoirs of novel bioactive metabolites with diverse groups of chemical structures. This review highlights the impact of marine organisms, with particular emphasis on marine plants, algae, bacteria, actinomycetes, fungi, sponges and soft corals. Anti-cancer effects of marine natural products in in vitro and in vivo studies were first introduced; their activity in the prevention of tumor formation and the related compound-induced apoptosis and cytotoxicities were tackled. The possible molecular mechanisms behind the biological effects are also presented. The review highlights the diversity of marine organisms, novel chemical structures, and chemical property space. Finally, therapeutic strategies and the present use of marine-derived components, its future direction and limitations are discussed.

2021 ◽  
Vol 10 (1) ◽  
Author(s):  
Justus Amuche Nweze ◽  
Florence N. Mbaoji ◽  
Yan-Ming Li ◽  
Li-Yan Yang ◽  
Shu-Shi Huang ◽  
...  

Abstract Background Malaria and neglected communicable protozoa parasitic diseases, such as leishmaniasis, and trypanosomiasis, are among the otherwise called diseases for neglected communities, which are habitual in underprivileged populations in developing tropical and subtropical regions of Africa, Asia, and the Americas. Some of the currently available therapeutic drugs have some limitations such as toxicity and questionable efficacy and long treatment period, which have encouraged resistance. These have prompted many researchers to focus on finding new drugs that are safe, effective, and affordable from marine environments. The aim of this review was to show the diversity, structural scaffolds, in-vitro or in-vivo efficacy, and recent progress made in the discovery/isolation of marine natural products (MNPs) with potent bioactivity against malaria, leishmaniasis, and trypanosomiasis. Main text We searched PubMed and Google scholar using Boolean Operators (AND, OR, and NOT) and the combination of related terms for articles on marine natural products (MNPs) discovery published only in English language from January 2016 to June 2020. Twenty nine articles reported the isolation, identification and antiparasitic activity of the isolated compounds from marine environment. A total of 125 compounds were reported to have been isolated, out of which 45 were newly isolated compounds. These compounds were all isolated from bacteria, a fungus, sponges, algae, a bryozoan, cnidarians and soft corals. In recent years, great progress is being made on anti-malarial drug discovery from marine organisms with the isolation of these potent compounds. Comparably, some of these promising antikinetoplastid MNPs have potency better or similar to conventional drugs and could be developed as both antileishmanial and antitrypanosomal drugs. However, very few of these MNPs have a pharmaceutical destiny due to lack of the following: sustainable production of the bioactive compounds, standard efficient screening methods, knowledge of the mechanism of action, partnerships between researchers and pharmaceutical industries. Conclusions It is crystal clear that marine organisms are a rich source of antiparasitic compounds, such as alkaloids, terpenoids, peptides, polyketides, terpene, coumarins, steroids, fatty acid derivatives, and lactones. The current and future technological innovation in natural products drug discovery will bolster the drug armamentarium for malaria and neglected tropical diseases.


Marine Drugs ◽  
2019 ◽  
Vol 17 (1) ◽  
pp. 31 ◽  
Author(s):  
Giuseppe Ercolano ◽  
Paola De Cicco ◽  
Angela Ianaro

Natural compounds derived from marine organisms exhibit a wide variety of biological activities. Over the last decades, a great interest has been focused on the anti-tumour role of sponges and algae that constitute the major source of these bioactive metabolites. A substantial number of chemically different structures from different species have demonstrated inhibition of tumour growth and progression by inducing apoptosis in several types of human cancer. The molecular mechanisms by which marine natural products activate apoptosis mainly include (1) a dysregulation of the mitochondrial pathway; (2) the activation of caspases; and/or (3) increase of death signals through transmembrane death receptors. This great variety of mechanisms of action may help to overcome the multitude of resistances exhibited by different tumour specimens. Therefore, products from marine organisms and their synthetic derivates might represent promising sources for new anticancer drugs, both as single agents or as co-adjuvants with other chemotherapeutics. This review will focus on some selected bioactive molecules from sponges and algae with pro-apoptotic potential in tumour cells.


2018 ◽  
Vol 19 (2) ◽  
pp. 138-164 ◽  
Author(s):  
Tingting Li ◽  
Ting Ding ◽  
Jianrong Li

The environment of marine occupies about 95% biosphere of the world and it can be a critical source of bioactive compounds for humans to be explored. Special environment such as high salt, high pressure, low temperature, low nutrition and no light, etc. has made the production of bioactive substances different from terrestrial organisms. Natural ingredients secreted by marine-derived bacteria, fungi, actinomycetes, Cyanobacteria and other organisms have been separated as active pharmacophore. A number of evidences have demonstrated that bioactive ingredients isolated from marine organisms can be other means to discover novel medicines, since enormous natural compounds from marine environment were specified to be anticancer, antibacterial, antifungal, antitumor, cytotoxic, cytostatic, anti-inflammatory, antiviral agents, etc. Although considerable progress is being made within the field of chemical synthesis and engineering biosynthesis of bioactive compounds, marine environment still remains the richest and the most diverse sources for new drugs. This paper reviewed the natural compounds discovered recently from metabolites of marine organisms, which possess distinct chemical structures that may form the basis for the synthesis of new drugs to combat resistant pathogens of human life. With developing sciences and technologies, marine-derived bioactive compounds are still being found, showing the hope of solving the problems of human survival and sustainable development of resources and environment.


Molecules ◽  
2020 ◽  
Vol 26 (1) ◽  
pp. 92
Author(s):  
Yue Yang ◽  
Ping-Ya He ◽  
Yi Zhang ◽  
Ning Li

There are abundant sources of anticancer drugs in nature that have a broad prospect in anticancer drug discovery. Natural compounds, with biological activities extracted from plants and marine and microbial metabolites, have significant antitumor effects, but their mechanisms are various. In addition to providing energy to cells, mitochondria are involved in processes, such as cell differentiation, cell signaling, and cell apoptosis, and they have the ability to regulate cell growth and cell cycle. Summing up recent data on how natural products regulate mitochondria is valuable for the development of anticancer drugs. This review focuses on natural products that have shown antitumor effects via regulating mitochondria. The search was done in PubMed, Web of Science, and Google Scholar databases, over a 5-year period, between 2015 and 2020, with a keyword search that focused on natural products, natural compounds, phytomedicine, Chinese medicine, antitumor, and mitochondria. Many natural products have been studied to have antitumor effects on different cells and can be further processed into useful drugs to treat cancer. In the process of searching for valuable new drugs, natural products such as terpenoids, flavonoids, saponins, alkaloids, coumarins, and quinones cover the broad space.


2014 ◽  
Vol 9 (11) ◽  
pp. 1934578X1400901 ◽  
Author(s):  
Jabeena Khazir ◽  
Darren L. Riley ◽  
Lynne A. Pilcher ◽  
Pieter De-Maayer ◽  
Bilal Ahmad Mir

This review attempts to portray the discovery and development of anticancer agents/drugs from diverse natural sources. Natural molecules from these natural sources including plants, microbes and marine organisms have been the basis of treatment of human diseases since the ancient times. Compounds derived from nature have been important sources of new drugs and also serve as templates for synthetic modification. Many successful anti-cancer drugs currently in use are naturally derived or their analogues and many more are under clinical trials. This review aims to highlight the invaluable role that natural products have played, and continue to play, in the discovery of anticancer agents.


Plants ◽  
2020 ◽  
Vol 9 (5) ◽  
pp. 595 ◽  
Author(s):  
Benyin Zhang ◽  
Xiaona Jin ◽  
Hengxia Yin ◽  
Dejun Zhang ◽  
Huakun Zhou ◽  
...  

Medicinal plants have been known as a rich source of natural products (NPs). Due to their diverse chemical structures and remarkable pharmacological activities, NPs are regarded as important repertoires for drug discovery and development. Biebersteinia plant species belong to the Biebersteiniaceae family, and have been used in folk medicines in China and Iran for ages. However, the chemical properties, bioactivities and modes of action of the NPs produced by medicinal Biebersteinia species are poorly understood despite the fact that there are only four known Biebersteinia species worldwide. Here, we reviewed the chemical classifications and diversity of the various NPs found in the four known Biebersteinia species. We found that the major chemical categories in these plants include flavonoids, alkaloids, phenylpropanoids, terpenoids, essential oils and fatty acids. We also discussed the anti-inflammatory, analgesic, antibacterial, antioxidant, antihypertensive and hypoglycemic effects of the four Biebersteinia species. We believe that the present review will facilitate the exploration of traditional uses and pharmacological properties of Biebersteinia species, extraction of the NPs and elucidation of their molecular mechanisms, as well as the development of novel drugs based on the reported properties and mode-of-action.


RSC Advances ◽  
2020 ◽  
Vol 10 (57) ◽  
pp. 34959-34976
Author(s):  
Enas Reda Abdelaleem ◽  
Mamdouh Nabil Samy ◽  
Samar Yehia Desoukey ◽  
Miaomiao Liu ◽  
Ronald J. Quinn ◽  
...  

Marine organisms have been considered an interesting target for the discovery of different classes of secondary natural products with wide-ranging biological activities.


2020 ◽  
Vol 8 ◽  
Author(s):  
Luiza F. O. Gervazoni ◽  
Gabrielle B. Barcellos ◽  
Taiana Ferreira-Paes ◽  
Elmo E. Almeida-Amaral

Leishmaniasis is an infectious parasitic disease that is caused by protozoa of the genus Leishmania, a member of the Trypanosomatidae family. Leishmaniasis is classified by the World Health Organization as a neglected tropical disease that is responsible for millions of deaths worldwide. Although there are many possible treatments for leishmaniasis, these treatments remain mostly ineffective, expensive, and long treatment, as well as causing side effects and leading to the development of resistance. For novel and effective treatments to combat leishmaniasis, many research groups have sought to utilize natural products. In addition to exhibiting potential as therapeutic compounds, natural products may also contribute to the development of new drugs based on their chemical structures. This review presents the most promising natural products, including crude extracts and isolated compounds, employed against Leishmania spp.


Marine Drugs ◽  
2019 ◽  
Vol 17 (5) ◽  
pp. 269 ◽  
Author(s):  
Chiara Lauritano ◽  
Maria Immacolata Ferrante ◽  
Alessandra Rogato

Over the last decade, genome sequences and other -omics datasets have been produced for a wide range of microalgae, and several others are on the way. Marine microalgae possess distinct and unique metabolic pathways, and can potentially produce specific secondary metabolites with biological activity (e.g., antipredator, allelopathic, antiproliferative, cytotoxic, anticancer, photoprotective, as well as anti-infective and antifouling activities). Because microalgae are very diverse, and adapted to a broad variety of environmental conditions, the chances to find novel and unexplored bioactive metabolites with properties of interest for biotechnological and biomedical applications are high. This review presents a comprehensive overview of the current efforts and of the available solutions to produce, explore and exploit -omics datasets, with the aim of identifying species and strains with the highest potential for the identification of novel marine natural products. In addition, funding efforts for the implementation of marine microalgal -omics resources and future perspectives are presented as well.


2020 ◽  
Vol 20 (11) ◽  
pp. 942-957
Author(s):  
Manjinder Singh ◽  
Pratibha Sharma ◽  
Pankaj Kumar Singh ◽  
Thakur Gurjeet Singh ◽  
Balraj Saini

Natural products form a significant portion of medicinal agents that are currently used for the management of cancer. All these natural products have unique structures along with diverse action mechanisms with the capacity to interact with different therapeutic targets of several complex disorders. Although plants contribute as a major source of natural products with anti-cancer potential, the marine environment and microbes have also bestowed some substantial chemotherapeutic agents. A few examples of anti-cancer agents of natural origin include vincristine, vinblastine, paclitaxel, camptothecin and topotecan obtained from plants, bryostatins, sarcodictyin and cytarabine from marine organisms and bleomycin and doxorubicin from micro-organisms (dactinomycin, bleomycin and doxorubicin). The incredible diversity in the chemical structures and biological properties of compounds obtained from million species of plants, marine organisms and microorganisms present in nature has commenced a new era of potential therapeutic anti-cancer agents.


Sign in / Sign up

Export Citation Format

Share Document