scholarly journals Fundamentals of Membrane Lipid Replacement: A Natural Medicine Approach to Repairing Cellular Membranes and Reducing Fatigue, Pain, and Other Symptoms While Restoring Function in Chronic Illnesses and Aging

Membranes ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 944
Author(s):  
Garth L. Nicolson ◽  
Gonzalo Ferreira de Mattos ◽  
Michael Ash ◽  
Robert Settineri ◽  
Pablo V. Escribá

Membrane Lipid Replacement (MLR) uses natural membrane lipid supplements to safely replace damaged, oxidized lipids in membranes in order to restore membrane function, decrease symptoms and improve health. Oral MLR supplements contain mixtures of cell membrane glycerolphospholipids, fatty acids, and other lipids, and can be used to replace and remove damaged cellular and intracellular membrane lipids. Membrane injury, caused mainly by oxidative damage, occurs in essentially all chronic and acute medical conditions, including cancer and degenerative diseases, and in normal processes, such as aging and development. After ingestion, the protected MLR glycerolphospholipids and other lipids are dispersed, absorbed, and internalized in the small intestines, where they can be partitioned into circulating lipoproteins, globules, liposomes, micelles, membranes, and other carriers and transported in the lymphatics and blood circulation to tissues and cellular sites where they are taken in by cells and partitioned into various cellular membranes. Once inside cells, the glycerolphospholipids and other lipids are transferred to various intracellular membranes by lipid carriers, globules, liposomes, chylomicrons, or by direct membrane–membrane interactions. The entire process appears to be driven by ‘bulk flow’ or mass action principles, where surplus concentrations of replacement lipids can stimulate the natural exchange and removal of damaged membrane lipids while the replacement lipids undergo further enzymatic alterations. Clinical studies have demonstrated the advantages of MLR in restoring membrane and organelle function and reducing fatigue, pain, and other symptoms in chronic illness and aging patients.

2021 ◽  
Vol 22 (4) ◽  
pp. 2174
Author(s):  
Liang Lin ◽  
Junchao Ma ◽  
Qin Ai ◽  
Hugh W. Pritchard ◽  
Weiqi Li ◽  
...  

Plant species conservation through cryopreservation using plant vitrification solutions (PVS) is based in empiricism and the mechanisms that confer cell integrity are not well understood. Using ESI-MS/MS analysis and quantification, we generated 12 comparative lipidomics datasets for membranes of embryogenic cells (ECs) of Magnolia officinalis during cryogenic treatments. Each step of the complex PVS-based cryoprotocol had a profoundly different impact on membrane lipid composition. Loading treatment (osmoprotection) remodeled the cell membrane by lipid turnover, between increased phosphatidic acid (PA) and phosphatidylglycerol (PG) and decreased phosphatidylcholine (PC) and phosphatidylethanolamine (PE). The PA increase likely serves as an intermediate for adjustments in lipid metabolism to desiccation stress. Following PVS treatment, lipid levels increased, including PC and PE, and this effectively counteracted the potential for massive loss of lipid species when cryopreservation was implemented in the absence of cryoprotection. The present detailed cryobiotechnology findings suggest that the remodeling of membrane lipids and attenuation of lipid degradation are critical for the successful use of PVS. As lipid metabolism and composition varies with species, these new insights provide a framework for technology development for the preservation of other species at increasing risk of extinction.


2021 ◽  
Vol 7 (7) ◽  
pp. 514
Author(s):  
Mariangela Dionysopoulou ◽  
George Diallinas

Recent biochemical and biophysical evidence have established that membrane lipids, namely phospholipids, sphingolipids and sterols, are critical for the function of eukaryotic plasma membrane transporters. Here, we study the effect of selected membrane lipid biosynthesis mutations and of the ergosterol-related antifungal itraconazole on the subcellular localization, stability and transport kinetics of two well-studied purine transporters, UapA and AzgA, in Aspergillus nidulans. We show that genetic reduction in biosynthesis of ergosterol, sphingolipids or phosphoinositides arrest A. nidulans growth after germling formation, but solely blocks in early steps of ergosterol (Erg11) or sphingolipid (BasA) synthesis have a negative effect on plasma membrane (PM) localization and stability of transporters before growth arrest. Surprisingly, the fraction of UapA or AzgA that reaches the PM in lipid biosynthesis mutants is shown to conserve normal apparent transport kinetics. We further show that turnover of UapA, which is the transporter mostly sensitive to membrane lipid content modification, occurs during its trafficking and by enhanced endocytosis, and is partly dependent on autophagy and Hect-type HulARsp5 ubiquitination. Our results point out that the role of specific membrane lipids on transporter biogenesis and function in vivo is complex, combinatorial and transporter-dependent.


2021 ◽  
Author(s):  
PEDRO FRANCISCO ALMAIDA PAGÁN ◽  
Alejandro Lucas-Sanchez ◽  
Antonio Martinez-Nicolas ◽  
Eva Terzibasi ◽  
Maria Angeles Rol de Lama ◽  
...  

Abstract The longevity-homeoviscous adaptation (LHA) theory of aging states that lipid composition of cell membranes is linked to metabolic rate and lifespan, which has been widely shown in mammals and birds but not sufficiently in fish. In this study, two species of the genus Amphiprion (A. percula and A. clarkii, with estimated maximum lifespan potentials [MLSP] of 30 and 9-16 years, respectively) and the damselfish Chromis viridis (estimated MLSP of 1-2 years) were chosen to test the LHA theory of aging in a potential model of exceptional longevity. Brain, livers and samples of skeletal muscle were collected for lipid analyses and integral part in the computation of membrane peroxidation indexes (PIn) from phospholipid (PL) fractions and PL fatty acid composition. When only the two anemonefish were compared, results pointed to the existence of a negative correlation between membrane PIn value and maximum life expectancy, well in line with the predictions from the LHA theory of aging. Nevertheless, contradictory data were obtained when the two clownfish were compared to the shorter-lived C. viridis. This results along with those obtained in previous studies on fish denote that the magnitude (and sometimes the direction) of the differences observed in membrane lipid composition and peroxidation index with MLSP cannot explain alone the diversity in longevity found among fishes.


2016 ◽  
Vol 8 (9) ◽  
pp. 71 ◽  
Author(s):  
Yuanyuan Guo ◽  
Shanshan Liu ◽  
Zhen Yang ◽  
Shanshan Tian ◽  
Na Sui

<p>Low temperature is a major factor limiting the productivity and geographical distribution of many plant species. In this study, we investigated the effect of chilling stress (10 <sup>o</sup>C) on seedling growth in two sweet sorghum (<em>Sorghum bicolor </em>(L.) Moench) inbred lines (M-81E and Roma). Results showed that the chilling resistance of M-81E was higher than that of Roma. The Fv/Fm in leaves of M-81E decreased less than that of Roma during chilling stress. After 24 h of chilling stress, the Fv/Fm of M-81E and Roma decreased by 24.3 and 45.8%, respectively. Fo was also affected significantly during chilling stress. Malondialdehyde (MDA), an indicator of lipid peroxidation caused by ROS, increased during chilling stress. The contents of MDA increased less in leaves of M-81E than that in Roma under chilling stress. The antioxidant enzymes (SOD and APX) activity of M-81E was higher than those of Roma during chilling stress. The unsaturated fatty acid content and the double bond index (DBI) of major membrane lipids of MGDG, DGDG, SQDG, PC, PE and PG of M-81E significantly increased after 24 h of chilling treatment (10 <sup>o</sup>C). The DBI of MGDG, DGDG, SQDG, PC and PG of Roma significantly decreased. These results showed that the chilling tolerance of M-81E was higher than that of Roma by increasing of unsaturated fatty acid in membrane lipid and powerful protective enzyme system at seedling stage.</p>


2019 ◽  
Vol 6 (2) ◽  
pp. 81-86 ◽  
Author(s):  
Chun-Mei Lyu ◽  
Li Zhang

Abstract Objective To explore the concept of adherence in the context of rehabilitation of patients with chronic illnesses. This concept analysis is helpful in predicting health behaviors and intentions including physical activity and dietary behaviors in patients with chronic illnesses. Methods The framework of Walker and Avant was used to analyze the concept of adherence. Results Adherence is defined as the extent to which a person’s behavior, such as taking medication, following a diet, and/or executing lifestyle changes, corresponds to agreed recommendations from a health-care provider. The antecedents of adherence are the biomedical status of the individual, social support, self-efficacy, and education. Self-report questionnaires and patient self-reporting are the most common measurement tools of adherence. Thus, the reliable and valid instrument of monitoring adherence in the clinical settings is challenging. Conclusions Analyzing the concept of adherence is necessary to help understand how best to promote adherence to improve health-related outcomes.


2005 ◽  
Vol 33 (5) ◽  
pp. 1146-1149 ◽  
Author(s):  
H.A. Boumann ◽  
A.I.P.M. de Kroon

Phosphatidylcholine (PC) is a very abundant membrane lipid in most eukaryotes, including yeast. The molecular species profile of PC, i.e. the ensemble of PC molecules with acyl chains differing in number of carbon atoms and double bonds, is important for membrane function. Pathways of PC synthesis and turnover maintain PC homoeostasis and determine the molecular species profile of PC. Studies addressing the processes involved in establishing the molecular species composition of PC in yeast using stable isotope labelling combined with detection by MS are reviewed.


Blood ◽  
1976 ◽  
Vol 47 (2) ◽  
pp. 189-195 ◽  
Author(s):  
TA Lane ◽  
SK Ballas ◽  
ER Burka

Abstract Human reticulocytes are capable of synthesizing membrane lipids from 14C-glycerol de novo. In both sickle and nonsickle reticulocytes the majority of 14C-glycerol was incorporated into phospholipids, primarily phosphatidylserine and phosphatidylcholine. Incorporation into sphingomyelin was minimal. The most abundant neutral lipid synthesized was triglyceride. In the absence of sickling, the rate of lipid synthesis in sickle reticulocytes was similar to that of nonsickle reticulocytes. With the induction of sickling under anoxic conditions sickle reticulocytes showed a prompt increase in the rate of lipid synthesis to an average of 69% above control values, while nonsickle reticulocytes under similar conditions decreased the rate of lipid synthesis. An increase in the rate of membrane lipid synthesis is associated in the mammalian erythroid cell with cell membrane damage. The findings further confirm that lesions of the erythroid cell membrane in sickle cell anemia are secondary to the sickling process itself.


2009 ◽  
Vol 6 (12) ◽  
pp. 2799-2807 ◽  
Author(s):  
F. Peterse ◽  
M. T. J. van der Meer ◽  
S. Schouten ◽  
G. Jia ◽  
J. Ossebaar ◽  
...  

Abstract. δ18O values of pedogenic minerals forming from soil water are commonly used to reconstruct paleoelevation. To circumvent some of the disadvantages of this method, soil n-alkane δD values were recently proposed as a new tool to reconstruct elevation changes, after showing that soil n-alkane δD values track the altitude effect on precipitation δD variations (r2=0.73 along Mt. Gongga, China). To verify the suitability of soil n-alkane δD values as a paleoelevation proxy we measured the δD of soil n-alkanes along Mt. Kilimanjaro (Tanzania). At midslope, soil n-alkane δD values are possibly influenced by the present precipitation belt, causing D-depletion in precipitation, and hence in the soil n-alkanes. Consequently, soil n-alkane δD values do not linearly relate with altitude (r2=0.03), suggesting that, in this case, they can not serve as an unambiguous proxy to infer past elevation changes. In contrast, it was recently shown that the MBT/CBT temperature proxy, which is based on the distribution of branched glycerol dialkyl glycerol tetraether (GDGT) membrane lipids, is linearly related with MAT, and thus altitude (r2=0.77), at Mt. Kilimanjaro. This suggests that this proxy may be more suitable for paleoelevation reconstruction for this region. However, application of the MBT/CBT proxy on the altitude gradient along Mt. Gongga showed that, although the MBT/CBT-derived temperature lapse rate (−5.9°C/1000 m) resembles the measured temperature lapse rate (−6.0°C/1000 m), there is a relatively large degree of scatter (r2=0.55). Our results thus show that both proxies can be subject to relatively large uncertainties in their assessment of past elevation changes, but that a combination of the soil n-alkane δD and MBT/CBT proxies can likely result in a more reliable assessment of paleoelevation.


Sign in / Sign up

Export Citation Format

Share Document