scholarly journals Application of a Low-Cost Cellulose-Based Bioadsorbent for the Effective Recovery of Terbium Ions from Aqueous Solutions

Metals ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 1641
Author(s):  
Lorena Alcaraz ◽  
Dayana Nathaly Saquinga ◽  
Floralba López ◽  
Lola De Lima ◽  
Francisco J. Alguacil ◽  
...  

The preparation of a low-cost cellulose-based bioadsorbent from cellulosic material extracted from rose stems (CRS) was carried out; rose stems are considered agricultural waste. After the required pretreatment of this waste and further treatment with an acidic mixture of acetic and nitric acids, the CRS product was produced. The resulting bioadsorbent was characterized by several techniques, such as X-ray diffraction, which revealed diffraction maxima related to the cellulose structure, whose calculated crystallinity index (CrI) was 75%. In addition, Fourier Transform Infrared spectroscopy (FTIR), 13C Nuclear Magnetic Resonance (NMR), and X-ray Photoelectron Spectroscopy (XPS) showed signs of acetylation of the sample. The thermal properties of the solid were also evaluated through Thermogravimetric Analysis (TGA). Scanning Electron Microscopy (SEM) showed cellulose fibers before and after the adsorption process, and some particles with irregular shapes were also observed. The CRS bioadsorbent was used for the effective adsorption of valuable Tb(III) from an aqueous solution. The adsorption data showed a good fit to the Freundlich isotherm and pseudo-second-order kinetic models; however, chemisorption was not ruled out. Finally, desorption experiments revealed the recovery of terbium ions with an efficiency of 97% from the terbium-loaded bioadsorbent.

Author(s):  
Lorena Alcaraz ◽  
Dayana Nathaly Saquinga ◽  
Floralba López ◽  
Lola de Lima ◽  
Francisco J. Alguacil ◽  
...  

Preparation of a low-cost cellulose-based bioadsorbent from the cellulosic material extracted from the rose stems (CRS) was carried out; rose stems were considered agricultural wastes. After the required pretreatment of this waste, and its further treatment with an acidic mixture of acetic and nitric acids, the CRS product was yielded. The resulting bioadsorbent was characterized by several techniques, such as X-ray diffraction, which revealed diffraction maxima related to cellulose structure, whose calculated crystallinity index (CrI) was 75 %. In addition, Fourier Transform Infrared spectroscopy (FTIR), 13C Nuclear Magnetic Resonance (NMR), and X-ray Photoelectron Spectroscopy (XPS) showed signs of acetylation of the sample, also, the thermal properties of the solid was evaluated through Thermogravimetric Analysis (TGA). Scanning Electron Microscopy (SEM) showed cellulose fibers before and after the adsorption process, some particles with not regular shapes were also observed. The CRS bioadsorbent was used in the effective adsorption of valuable Tb(III) from aqueous solution. The adsorption data resulted in a better fit to the Freundlich isotherm, and pseudo-second-order kinetic models; however, chemisorption had not been ruled out. Finally, desorption experiments revealed a recovery of terbium ions with an efficiency of 97 % from terbium-loaded bioadsorbent.


2019 ◽  
Vol 9 (4) ◽  
pp. 793 ◽  
Author(s):  
Camila Zequine ◽  
Fangzhou Wang ◽  
Xianglin Li ◽  
Deepa Guragain ◽  
S.R. Mishra ◽  
...  

The urea oxidation reaction (UOR) is a possible solution to solve the world’s energy crisis. Fuel cells have been used in the UOR to generate hydrogen with a lower potential compared to water splitting, decreasing the costs of energy production. Urea is abundantly present in agricultural waste and in industrial and human wastewater. Besides generating hydrogen, this reaction provides a pathway to eliminate urea, which is a hazard in the environment and to people’s health. In this study, nanosheets of CuCo2O4 grown on nickel foam were synthesized as an electrocatalyst for urea oxidation to generate hydrogen as a green fuel. The synthesized electrocatalyst was characterized using X-ray diffraction, scanning electron microscopy, and X-ray photoelectron spectroscopy. The electroactivity of CuCo2O4 towards the oxidation of urea in alkaline solution was evaluated using electrochemical measurements. Nanosheets of CuCo2O4 grown on nickel foam required the potential of 1.36 V in 1 M KOH with 0.33 M urea to deliver a current density of 10 mA/cm2. The CuCo2O4 electrode was electrochemically stable for over 15 h of continuous measurements. The high catalytic activities for the hydrogen evolution reaction make the CuCo2O4 electrode a bifunctional catalyst and a promising electroactive material for hydrogen production. The two-electrode electrolyzer demanded a potential of 1.45 V, which was 260 mV less than that for the urea-free counterpart. Our study suggests that the CuCo2O4 electrode can be a promising material as an efficient UOR catalyst for fuel cells to generate hydrogen at a low cost.


Polymers ◽  
2019 ◽  
Vol 11 (4) ◽  
pp. 711 ◽  
Author(s):  
Yingying Wen ◽  
Yong Ji ◽  
Shifeng Zhang ◽  
Jie Zhang ◽  
Gaotang Cai

The fabrication of functional lignocellulose-based materials has drawn considerable attention because it acts as a green separation/absorption material owing to its multi-porous mesostructure. In this study, a surface functionalized lignocellulose-based adsorbent for the highly efficient capture of Cd(II) ions was prepared through facile in situ co-deposition of wood waste-derived saw powder (SP) in the presence of tannic acid (TA) and aminopropyltriethoxysilane (APTES) mixed aqueous solution. The SP was first modified using TA-APTES coating to synthesize the functional SP substrate (SP-(TA-APTES)). The SP-(TA-APTES) hybrids served as reactive platforms, which enabled further decoration with amino-rich polyethylenimine (PEI) due to the outstanding secondary reactions of the TA-APTES layer. The surface morphology of the resulting SP-(TA-APTES)-PEI (SP-TAPI) composites were investigated using Fourier-transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), thermogravimetric analysis (TGA), and scanning electron microscopy (SEM). Significantly, the combined advantages of the lignocellulosic skeleton, the layer-particle structure, and the hybrid coating contributed to the enhanced adsorption capacity of Cd(II) (up to 22.66 mg/g at pH = 5.0). This removal capacity was higher than that of most reported agricultural waste-based or lignocellulose-based materials. The Cd(II) adsorption mechanism of the surface-modified SP-TAPI composites was studied in detail. These results provide new insights into the high value-added utilization of agricultural waste for water purification applications.


Materials ◽  
2019 ◽  
Vol 12 (14) ◽  
pp. 2253 ◽  
Author(s):  
Magdalena Tuchowska ◽  
Barbara Muir ◽  
Mariola Kowalik ◽  
Robert P. Socha ◽  
Tomasz Bajda

Montmorillonite—the most popular mineral of the smectite group—has been recognized as a low-cost, easily available mineral sorbent of heavy metals and other organic and inorganic compounds that pollute water. The aim of this work was to determine the sorption mechanism and to identify the reaction products formed on the surface of montmorillonite and organo-montmorillonite after sorption of molybdates (Mo(VI)) and tungstates (W(VI)). Montmorillonites are often modified to generate a negative charge on the surface. The main objective of the study was to investigate and compare the features of Na-montmorillonite (Na-M), montmorillonite modified with dodecyl trimethyl ammonium bromide (DDTMA-M), and montmorillonite modified with didodecyl dimethyl ammonium bromide (DDDDMA-M) before and after sorption experiments. The material obtained after sorption was studied by X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and X-ray photoelectron spectroscopy (XPS). The XRD pattern showed the presence of a new crystallic phase in the sample that was observed under an SEM as an accumulation of crystals. The FTIR spectra showed bands related to Mo–O and W–O vibration (840 and 940 cm−1, respectively). The obtained results suggest that molybdenum(VI) and tungsten(VI) ions sorb onto the organo-montmorillonite in the form of alkylammonium molybdates and tungstates.


Water ◽  
2018 ◽  
Vol 10 (10) ◽  
pp. 1316 ◽  
Author(s):  
Rabia Baby Shaikh ◽  
Bullo Saifullah ◽  
Fawad Rehman ◽  
Ruqia Iqbal Shaikh

The presence of inorganic pollutants such as metal ions (Ni2+, Pb2+, Cr6+) in water, probably by long-term geochemical changes and from the effluents of various industries, causes diseases and disorders (e.g., cancer, neurodegenerative diseases, muscular dystrophy, hepatitis, and multiple sclerosis). Conventional methods for their removal are limited by technical and economic barriers. In biosorption, low-cost and efficient biomaterials are used for this purpose. In this study, Brassica Campestris stems from the agriculture waste and has been used for the removal of Ni2+, Cr6+ and Pb2+ ions from an aqueous solution containing all the ions. Effect of different parameters, e.g., pH, contact time, metal ion initial concentration, adsorbent dose, agitation rate and temperature were analyzed and optimized. The adsorbent worked well for removal of the Pb2+ and Cr6+ as compared to Ni2+. The atomic absorption spectrophotometer (AAS) and FTIR investigation of adsorbent before and after shows a clear difference in the adsorbent capability. The highest adsorption percentage was found at 98%, 91%, and 49% respectively, under the optimized parameters. Furthermore, the Langmuir isotherm was found better in fitting to the experimental data than that of the Freundlich isotherm.


Author(s):  
Norini Tahir ◽  
Zaiton Abdul Majid

Palm oil empty fruit bunch (POEFB), an agricultural waste, used as low-cost adsorbent for removal Acid Orange 51 (AO51) dye from aqueous solutions was studied. Batch mode experiments were carried out at room temperature (28 ± 2) °C to study the effects of contact time and initial dye concentrations (10-200 mg/L). The equilibrium adsorption data of AO51 dye on empty fruit bunch were analyzed by three isotherms, namely the Langmuir isotherm, Freundlich isotherm and Temkin isotherm model. The result indicated that the equilibrium sorption fitted well with the Freundlich isotherm, displaying higher regression coefficient, R2value. The monolayer adsorption capacity of POEFB was found to be 166.67 mg/g. The kinetic data obtained at different concentrations have been analyzed using the pseudo-first-order, pseudo-second-order and intraparticle diffusion models. It was shown that pseudo-second-order kinetic model could best describe the adsorption kinetics.


2019 ◽  
Vol 54 (4) ◽  
pp. 278-289 ◽  
Author(s):  
Bolanle M. Babalola ◽  
Adegoke O. Babalola ◽  
Habibat O. Adubiaro ◽  
Olushola S. Ayanda ◽  
Simphiwe M. Nelana ◽  
...  

Abstract The removal of Pb(II) ions from synthetic wastewater using Delonix regia pods and leaves as low-cost biosorbents was investigated. The elemental, morphological and phase characterization of Delonix regia pods and leaves were examined before and after biosorption. The adsorption process at various pH values, contact times, initial concentration of Pb(II) ions and adsorbent doses was studied with the aim of investigating the consequences of these parameters on the process of biosorption. The Langmuir adsorption isotherm provided the best fit for the experimental data of the pods while the Freundlich isotherm gave a better fit for the leaves of Delonix regia. The optimum adsorption capacity of 30.27 mg/g for the pods and 27.60 mg/g for the leaves was achieved when 0.5 g of the adsorbent was mixed with 20 mL of 1,000 mg/L Pb(II) ions solution for 30 min at 21 ± 2 °C and a stirring speed of 18 rpm. The data obtained from the time-dependent experiment of the biosorbents followed the pseudo-second-order kinetic model. This study showed that Delonix regia pods and leaves could be developed further as a low-cost sorbent that could be harnessed for removing Pb from industrial wastewater and thus limit water pollution from point sources.


2020 ◽  
Vol 82 (12) ◽  
pp. 2962-2974
Author(s):  
Hua Deng ◽  
Qiuyan Li ◽  
Meijia Huang ◽  
Anyu Li ◽  
Junyu Zhang ◽  
...  

Abstract Low-cost banana stalk (Musa nana Lour.) biochar was prepared using oxygen-limited pyrolysis (at 500 °C and used), to remove heavy metal ions (including Zn(II), Mn(II) and Cu(II)) from aqueous solution. Adsorption experiments showed that the initial solution pH affected the ability of the biochar to adsorb heavy metal ions in single- and polymetal systems. Compared to Mn(II) and Zn(II), the biochar exhibited highly selective Cu(II) adsorption. The adsorption kinetics of all three metal ions followed the pseudo-second-order kinetic equation. The isotherm data demonstrated the Langmuir model fit for Zn(II), Mn(II) and Cu(II). The results showed that the chemical adsorption of single molecules was the main heavy metal removal mechanism. The maximum adsorption capacities (mg·g−1) were ranked as Cu(II) (134.88) > Mn(II) (109.10) > Zn(II) (108.10)) by the single-metal adsorption isotherms at 298 K. Moreover, characterization analysis was performed using Fourier transform infrared spectroscopy, the Brunauer-Emmett-Teller method, scanning electron microscopy with energy-dispersive X-ray spectroscopy, X-ray diffraction, and X-ray photoelectron spectroscopy. The results revealed that ion exchange was likely crucial in Mn(II) and Zn(II) removal, while C-O, O-H and C = O possibly were key to Cu(II) removal by complexing or other reactions.


Energies ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4483
Author(s):  
Yuyingnan Liu ◽  
Xinrui Xu ◽  
Bin Qu ◽  
Xiaofeng Liu ◽  
Weiming Yi ◽  
...  

In this study, corn cob was used as raw material and modified methods employing KOH and KMnO4 were used to prepare activated carbon with high adsorption capacity for mercury ions. Experiments on the effects of different influencing factors on the adsorption of mercury ions were undertaken. The results showed that when modified with KOH, the optimal adsorption time was 120 min, the optimum pH was 4; when modified with KMnO4, the optimal adsorption time was 60 min, the optimal pH was 3, and the optimal amount of adsorbent and the initial concentration were both 0.40 g/L and 100 mg/L under both modified conditions. The adsorption process conforms to the pseudo-second-order kinetic model and Langmuir model. Scanning electron microscopy and energy-dispersive X-ray spectroscopy (SEM-EDS), Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS) and Zeta potential characterization results showed that the adsorption process is mainly physical adsorption, surface complexation and ion exchange.


2021 ◽  
Vol 22 (9) ◽  
pp. 4433
Author(s):  
Eun Sung Lee ◽  
Byung Seok Cha ◽  
Seokjoon Kim ◽  
Ki Soo Park

In recent years, fluorescent metal nanoclusters have been used to develop bioimaging and sensing technology. Notably, protein-templated fluorescent gold nanoclusters (AuNCs) are attracting interest due to their excellent fluorescence properties and biocompatibility. Herein, we used an exosome template to synthesize AuNCs in an eco-friendly manner that required neither harsh conditions nor toxic chemicals. Specifically, we used a neutral (pH 7) and alkaline (pH 11.5) pH to synthesize two different exosome-based AuNCs (exo-AuNCs) with independent blue and red emission. Using field-emission scanning electron microscopy, energy dispersive X-ray microanalysis, nanoparticle tracking analysis, and X-ray photoelectron spectroscopy, we demonstrated that AuNCs were successfully formed in the exosomes. Red-emitting exo-AuNCs were found to have a larger Stokes shift and a stronger fluorescence intensity than the blue-emitting exo-AuNCs. Both exo-AuNCs were compatible with MCF-7 (human breast cancer), HeLa (human cervical cancer), and HT29 (human colon cancer) cells, although blue-emitting exo-AuNCs were cytotoxic at high concentrations (≥5 mg/mL). Red-emitting exo-AuNCs successfully stained the nucleus and were compatible with membrane-staining dyes. This is the first study to use exosomes to synthesize fluorescent nanomaterials for cellular imaging applications. As exosomes are naturally produced via secretion from almost all types of cell, the proposed method could serve as a strategy for low-cost production of versatile nanomaterials.


Sign in / Sign up

Export Citation Format

Share Document