scholarly journals Kinetics of Dry-Batch Grinding in a Laboratory-Scale Ball Mill of Sn–Ta–Nb Minerals from the Penouta Mine (Spain)

Metals ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 1687
Author(s):  
Jenniree V. Nava ◽  
Teresa Llorens ◽  
Juan María Menéndez-Aguado

The optimization of processing plants is one of the main concerns in the mining industry, since the comminution stage, a fundamental operation, accounts for up to 70% of total energy consumption. The aim of this study was to determine the effects that ball size and mill speed exert on the milling kinetics over a wide range of particle sizes. This was done through dry milling and batch grinding tests performed on two samples from the Penouta Sn–Ta–Nb mine (Galicia, Spain), and following Austin methodology. In addition, the relationships amongst Sn, Ta and Nb content, as metals of interest, the specific rate of breakage Si, the kinetic parameters, and the operational conditions were studied through X-Ray fluorescence (XRF) techniques. The results show that, overall, the specific rate of breakage Si decreases with decreasing feed particle size and increasing ball size for most of the tested conditions. A selection function, αT, was formulated on the basis of the ball size for both Penouta mine samples. Finally, it was found that there does exist a direct relationship amongst Sn, Ta and Nb content, as metals of interest, in the milling product, the specific rate of breakage Si and the operational–mineralogical variables of ball size, mill speed and feed particle size.

Author(s):  
C. J. Chan ◽  
K. R. Venkatachari ◽  
W. M. Kriven ◽  
J. F. Young

Dicalcium silicate (Ca2SiO4) is a major component of Portland cement. It has also been investigated as a potential transformation toughener alternative to zirconia. It has five polymorphs: α, α'H, α'L, β and γ. Of interest is the β-to-γ transformation on cooling at about 490°C. This transformation, accompanied by a 12% volume increase and a 4.6° unit cell shape change, is analogous to the tetragonal-to-monoclinic transformation in zirconia. Due to the processing methods used, previous studies into the particle size effect were limited by a wide range of particle size distribution. In an attempt to obtain a more uniform size, a fast quench rate involving a laser-melting/roller-quenching technique was investigated.The laser-melting/roller-quenching experiment used precompacted bars of stoichiometric γ-Ca2SiO4 powder, which were synthesized from AR grade CaCO3 and SiO2xH2O. The raw materials were mixed by conventional ceramic processing techniques, and sintered at 1450°C. The dusted γ-Ca2SiO4 powder was uniaxially pressed into 0.4 cm x 0.4 cm x 4 cm bars under 34 MPa and cold isostatically pressed under 172 MPa. The γ-Ca2SiO4 bars were melted by a 10 KW-CO2 laser.


2021 ◽  
Vol 13 (4) ◽  
pp. 1866
Author(s):  
Noor Allesya Alis Ramli ◽  
Faradiella Mohd Kusin ◽  
Verma Loretta M. Molahid

Mining waste may contain potential minerals that can act as essential feedstock for long-term carbon sequestration through a mineral carbonation process. This study attempts to identify the mineralogical and chemical composition of iron ore mining waste alongside the effects of particle size, temperature, and pH on carbonation efficiency. The samples were found to be alkaline in nature (pH of 6.9–7.5) and contained small-sized particles of clay and silt, thus indicating their suitability for mineral carbonation reactions. Samples were composed of important silicate minerals needed for the formation of carbonates such as wollastonite, anorthite, diopside, perovskite, johannsenite, and magnesium aluminum silicate, and the Fe-bearing mineral magnetite. The presence of Fe2O3 (39.6–62.9%) and CaO (7.2–15.2%) indicated the potential of the waste to sequester carbon dioxide because these oxides are important divalent cations for mineral carbonation. The use of small-sized mine-waste particles enables the enhancement of carbonation efficiency, i.e., particles of <38 µm showed a greater extent of Fe and Ca carbonation efficiency (between 1.6–6.7%) compared to particles of <63 µm (0.9–5.7%) and 75 µm (0.7–6.0%). Increasing the reaction temperature from 80 °C to 150–200 °C resulted in a higher Fe and Ca carbonation efficiency of some samples between 0.9–5.8% and 0.8–4.0%, respectively. The effect of increasing the pH from 8–12 was notably observed in Fe carbonation efficiency of between 0.7–5.9% (pH 12) compared to 0.6–3.3% (pH 8). Ca carbonation efficiency was moderately observed (0.7–5.5%) as with the increasing pH between 8–10. Therefore, it has been evidenced that mineralogical and chemical composition were of great importance for the mineral carbonation process, and that the effects of particle size, pH, and temperature of iron mining waste were influential in determining carbonation efficiency. Findings would be beneficial for sustaining the mining industry while taking into account the issue of waste production in tackling the global carbon emission concerns.


Catalysts ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 730
Author(s):  
Erik Sarnello ◽  
Tao Li

Enzyme immobilization techniques are widely researched due to their wide range of applications. Polymer–protein core–shell nanoparticles (CSNPs) have emerged as a promising technique for enzyme/protein immobilization via a self-assembly process. Based on the desired application, different sizes and distribution of the polymer–protein CSNPs may be required. This work systematically studies the assembly process of poly(4-vinyl pyridine) and bovine serum albumin CSNPs. Average particle size was controlled by varying the concentrations of each reagent. Particle size and size distributions were monitored by dynamic light scattering, ultra-small-angle X-ray scattering, small-angle X-ray scattering and transmission electron microscopy. Results showed a wide range of CSNPs could be assembled ranging from an average radius as small as 52.3 nm, to particles above 1 µm by adjusting reagent concentrations. In situ X-ray scattering techniques monitored particle assembly as a function of time showing the initial particle growth followed by a decrease in particle size as they reach equilibrium. The results outline a general strategy that can be applied to other CSNP systems to better control particle size and distribution for various applications.


2021 ◽  
pp. 014616722199763
Author(s):  
Ophir Katzenelenbogen ◽  
Nina Knoll ◽  
Gertraud Stadler ◽  
Eran Bar-Kalifa

Planning promotes progress toward goal achievement in a wide range of domains. To date, planning has mostly been studied as an individual process. In couples, however, the partner is likely to play an important role in planning. This study tested the effects of individual and dyadic planning on goal progress and goal-related actions. Two samples of couples ( N = 76 and N = 87) completed daily diaries over a period of 28 and 21 days. The results indicate that individual and dyadic planning fluctuate on a daily basis and support the idea that dyadic planning is predominantly used as a complementary strategy to individual planning. As expected, individual and dyadic planning were positively associated with higher levels of action control and goal progress. In Sample 2, dyadic planning was only associated with goal progress on days in which individuals felt that they were dependent upon their partners’ behaviors to achieve their goals.


2003 ◽  
Vol 13 (03n04) ◽  
pp. 133-139 ◽  
Author(s):  
F. ALDAPE ◽  
J. FLORES M.

Samples of airborne particulate matter were collected in four sites along an east-west line from the Popocatépetl volcano after the eruption episode of June 30, 1997. The Popocatépetl volcano, with variable activity since it was known, is currently under low but continuous activity prolonged for almost one decade, with occasional moderate eruption episodes producing mainly fumes, ashes and volcanic dusts. The main objective of this study is to determine whether or not some elements have increased their presence in the atmosphere as a result of the volcanic activity, and also if some others, not usually found in urban aerosols, have appeared because of the same reason. In addition, the information obtained will be a source of scientific data for health risk assessment of the population exposed to volcanic emanations. The sample collection was performed on alternate days from July 10 to August 13 1997 in Puebla and Atlixco in Puebla State. Tlalpan within Mexico City, and Salazar in the State of Mexico. Two samples a day were taken in two periods: 7-19 h and 19-7 h. The samplers separated particles into two particle size fractions. PM25 and PM15. Elemental concentrations were determined by PIXE and the results obtained showed increased concentrations of mainly Ti and Fe in all sampling sites, thus indicating a long range transportation of volcanic dusts in both particle size fractions. Concentrations of Ti were found clearly above the average values of urban areas such as Mexico City, and although this element can be considered of low toxicity, the biological, metabolic and toxic effects on human beings are still under investigation.


Author(s):  
Yongli Zhang ◽  
Brenton S. McLaury ◽  
Siamack A. Shirzai

Erosion equations are usually obtained from experiments by impacting solid particles entrained in a gas or liquid on a target material. The erosion equations are utilized in CFD (Computational Fluid Dynamics) models to predict erosion damage caused by solid particle impingements. Many erosion equations are provided in terms of an erosion ratio. By definition, the erosion ratio is the mass loss of target material divided by the mass of impacting particles. The mass of impacting particles is the summation of (particle mass × number of impacts) of each particle. In erosion experiments conducted to determine erosion equations, some particles may impact the target wall many times and some other particles may not impact the target at all. Therefore, the experimental data may not reflect the actual erosion ratio because the mass of the sand that is used to run the experiments is assumed to be the mass of the impacting particles. CFD and particle trajectory simulations are applied in the present work to study effects of multiple impacts on developing erosion ratio equations. The erosion equation as well as the CFD-based erosion modeling procedure is validated against a variety of experimental data. The results show that the effect of multiple impacts is negligible in air cases. In water cases, however, this effect needs to be accounted for especially for small particles. This makes it impractical to develop erosion ratio equations from experimental data obtained for tests with sand in water or dense gases. Many factors affecting erosion damage are accounted for in various erosion equations. In addition to some well-studied parameters such as particle impacting speed and impacting angle, particle size also plays a significant role in the erosion process. An average particle size is usually used in analyzing experimental data or estimating erosion damage cases of practical interest. In petroleum production applications, however, the size of sand particles that are entrained in produced fluids can vary over a fairly broad range. CFD simulations are also performed to study the effect of particle size distribution. In CFD simulations, particle sizes are normally distributed with the mean equaling the average size of interest and the standard deviation varying over a wide range. Based on CFD simulations, an equation is developed and can be applied to account for the effect of the particle size distribution on erosion prediction for gases and liquids.


Author(s):  
I. I. Vedyakov ◽  
D. V. Konin ◽  
A. A. Egorova ◽  
I. V. Rtishcheva

The present work provides an overview and analysis of scientific, technical, regulatory, and methodical Russian and foreign literature regarding using glass as a material for load-bearing structures of buildings. In the absence of design standards, an experimental study of usually one or two samples is necessary each time glass structure is used; however, this is insufficient to determine the distinct pattern of material performance. Since jointing the glass structures has been rarely studied, the number of tests is minimal, thus preventing establishing the unambiguous material operation and its calculated physical and mechanical characteristics. The article considers and evaluates the test results of glass structures obtained by various methods. The particular values of ultimate stresses and deformation modulus lie in a wide range. The technology, manufacturing process, and starting materials have a significant influence on the characteristics of glass, including multilayer glass. This article stresses the need for developing regulatory technical and methodical documents, the design and testing standards for glass structures and their jointing. It is necessary to classify load-bearing glass structures by various criteria.


2018 ◽  
Vol 620 ◽  
pp. A18 ◽  
Author(s):  
C. H. A. Logan ◽  
B. J. Maughan ◽  
M. N. Bremer ◽  
P. Giles ◽  
M. Birkinshaw ◽  
...  

Context. The XMM-XXL survey has used observations from the XMM-Newton observatory to detect clusters of galaxies over a wide range in mass and redshift. The moderate PSF (FWHM ~ 6″ on-axis) of XMM-Newton means that point sources within or projected onto a cluster may not be separated from the cluster emission, leading to enhanced luminosities and affecting the selection function of the cluster survey. Aims. We present the results of short Chandra observations of 21 galaxy clusters and cluster candidates at redshifts z > 1 detected in the XMM-XXL survey in X-rays or selected in the optical and infra-red. Methods. With the superior angular resolution of Chandra, we investigate whether there are any point sources within the cluster region that were not detected by the XMM-XXL analysis pipeline, and whether any point sources were misclassified as distant clusters. Results. Of the 14 X-ray selected clusters, 9 are free from significant point source contamination, either having no previously unresolved sources detected by Chandra or with less than about 10% of the reported XXL cluster flux being resolved into point sources. Of the other five sources, one is significantly contaminated by previously unresolved AGN, and four appear to be AGN misclassified as clusters. All but one of these cases are in the subset of less secure X-ray selected cluster detections and the false positive rate is consistent with that expected from the XXL selection function modelling. We also considered a further seven optically selected cluster candidates associated with faint XXL sources that were not classed as clusters. Of these, three were shown to be AGN by Chandra, one is a cluster whose XXL survey flux was highly contaminated by unresolved AGN, while three appear to be uncontaminated clusters. By decontaminating and vetting these distant clusters, we provide a pure sample of clusters at redshift z > 1 for deeper follow-up observations, and demonstrate the utility of using Chandra snapshots to test for AGN in surveys with high sensitivity but poor angular resolution.


2000 ◽  
Vol 78 (8) ◽  
pp. 1052-1059 ◽  
Author(s):  
C Aliaga ◽  
E A Lissi

Stable free radicals derived from 2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS·+) have been extensively employed to monitor the antioxidant capacity of biological fluids and beverages. Besides reacting with typical antioxidants (such as phenols or thiols) these radicals react with a variety of hydrogen or electron donors. The present work reports on the kinetics and mechanism of these radical reactions with several amino acids. Reaction rates notably increase when the pH of the media increases and, when measured under similar conditions, follows the ordercysteine > > tryptophan > tyrosine > histidine > cystineThe kinetics of the process is interpreted in terms of a mechanism comprising an initial pH dependent reversible step, followed by secondary reactions of the substrate derived radical with itself or with another ABTS·+; this simple three-step mechanism leads to very complex kinetic expressions. The specific rate constants of several of the elementary steps were determined by working under a wide range of substrate, radical, and ABTS concentrations. The values obtained for the initial interaction between the ABTS derived radical and the substrate range from 0.5 M–1 s–1 to 1.9 × 106 M–1 s–1 for histidine and cysteine, respectively.Key words: ABTS radical cation, 2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonic acid), amino acids, kinetics.


1998 ◽  
pp. 358-360

Sign in / Sign up

Export Citation Format

Share Document