scholarly journals Carbide Precipitation, Dissolution, and Coarsening in G18CrMo2–6 Steel

Metals ◽  
2019 ◽  
Vol 9 (9) ◽  
pp. 916 ◽  
Author(s):  
Zhenjiang Li ◽  
Pengju Jia ◽  
Yujing Liu ◽  
Huiping Qi

The precipitation, dissolution, and coarsening of different carbides at 680 °C in G18CrMo2–6 steel was investigated experimentally combined with Jmatpro simulation. The G18CrMo2–6 steel was normalized at 940 °C, followed by tempering at different times at a constant temperature of 680 °C. During the tempering process, there are mainly two kinds of carbide, namely M3C and M23C6. Through characterization of microstructural evolution, thermodynamic calculation, and kinetic simulation, it was observed that during the tempering process, the stable M23C6 carbide was growing, whereas the metastable M3C carbide was disappearing. At the end, the M3C carbide was dissolved and the M23C6 carbide was in equilibrium with the matrix.

Author(s):  
G. Das ◽  
R. E. Omlor

Fiber reinforced titanium alloys hold immense potential for applications in the aerospace industry. However, chemical reaction between the fibers and the titanium alloys at fabrication temperatures leads to the formation of brittle reaction products which limits their development. In the present study, coated SiC fibers have been used to evaluate the effects of surface coating on the reaction zone in the SiC/IMI829 system.IMI829 (Ti-5.5A1-3.5Sn-3.0Zr-0.3Mo-1Nb-0.3Si), a near alpha alloy, in the form of PREP powder (-35 mesh), was used a茸 the matrix. CVD grown AVCO SCS-6 SiC fibers were used as discontinuous reinforcements. These fibers of 142μm diameter contained an overlayer with high Si/C ratio on top of an amorphous carbon layer, the thickness of the coating being ∽ 1μm. SCS-6 fibers, broken into ∽ 2mm lengths, were mixed with IMI829 powder (representing < 0.1vol%) and the mixture was consolidated by HIP'ing at 871°C/0. 28GPa/4h.


Materials ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2225
Author(s):  
Aleksandra Kotarska ◽  
Tomasz Poloczek ◽  
Damian Janicki

The article presents research in the field of laser cladding of metal-matrix composite (MMC) coatings. Nickel-based superalloys show attractive properties including high tensile strength, fatigue resistance, high-temperature corrosion resistance and toughness, which makes them widely used in the industry. Due to the insufficient wear resistance of nickel-based superalloys, many scientists are investigating the possibility of producing nickel-based superalloys matrix composites. For this study, the powder mixtures of Inconel 625 superalloy with 10, 20 and 40 vol.% of TiC particles were used to produce MMC coatings by laser cladding. The titanium carbides were chosen as reinforcing material due to high thermal stability and hardness. The multi-run coatings were tested using penetrant testing, macroscopic and microscopic observations, microhardness measurements and solid particle erosive test according to ASTM G76-04 standard. The TiC particles partially dissolved in the structure during the laser cladding process, which resulted in titanium and carbon enrichment of the matrix and the occurrence of precipitates formation in the structure. The process parameters and coatings chemical composition variation had an influence on coatings average hardness and erosion rates.


2021 ◽  
pp. 002199832110055
Author(s):  
Zeeshan Ahmad ◽  
Sabah Khan

Alumnium alloy LM 25 based composites reinforced with boron carbide at different weight fractions of 4%, 8%, and 12% were fabricated by stir casting technique. The microstructures and morphology of the fabricated composites were studied by scanning electron microscopy and energy dispersive spectroscopy. Elemental mapping of all fabricated composites were done to demonstrate the elements present in the matrix and fabricated composites. The results of microstructural analyses reveal homogenous dispersion of reinforcement particles in the matrix with some little amount of clustering found in composites reinforced with 12% wt. of boron carbide. The mechanical characterization is done for both alloy LM 25 and all fabricated composites based on hardness and tensile strength. The hardness increased from 13.6% to 21.31% and tensile strength 6.4% to 22.8% as reinforcement percentage of boron carbide particles increased from 0% to 12% wt. A fractured surface mapping was also done for all composites.


Energies ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 3097
Author(s):  
Roberto Benato ◽  
Antonio Chiarelli ◽  
Sebastian Dambone Sessa

The purpose of this paper is to highlight that, in order to assess the availability of different HVDC cable transmission systems, a more detailed characterization of the cable management significantly affects the availability estimation since the cable represents one of the most critical elements of such systems. The analyzed case study consists of a multi-terminal direct current system based on both line commutated converter and voltage source converter technologies in different configurations, whose availability is computed for different transmitted power capacities. For these analyses, the matrix-based reliability estimation method is exploited together with the Monte Carlo approach and the Markov state space one. This paper shows how reliability analysis requires a deep knowledge of the real installation conditions. The impact of these conditions on the reliability evaluation and the involved benefits are also presented.


2009 ◽  
Vol 23 (06n07) ◽  
pp. 855-862 ◽  
Author(s):  
FEIYUE MA ◽  
ZHIYI LIU

The microstructural evolution in an Al - Cu - Mg - Ag alloy with trace Zr addition during homogenization treatment was characterized by Differential Scanning Calorimetry (DSC), Scanning Electron Microscopy (SEM) and Energy-dispersive X-ray Spectroscopy (EDS). It was shown that the low-melting-point phase segregating toward grain boundaries is Al 2 Cu , with a melting point of 523.52°C. A two-step homogenization process was employed to optimize the microstructure of the as-cast alloy, during which the alloy was first homogenized at a lower temperature, then at a higher temperature. After homogenized at 420°C for 6 h, Al 3 Zr particles were finely formed in the matrix. After that, when the alloy was homogenized at an elevated temperature for a longer time, i.e., 515°C for 24 h, most of the precipates at the grain boundaries were removed. Furthermore, the dispersive Al 3 Zr precipitates were retained, without coarsening greatly in the final homogenization step. A kinetics model is employed to predict the optimal homogenization time at a given temperature theoretically, and it confirms the result in present study, which is 420°C/6h+515°C/24h.


2006 ◽  
Vol 17 (9) ◽  
pp. 4051-4062 ◽  
Author(s):  
Michelle R. Gallas ◽  
Mary K. Dienhart ◽  
Rosemary A. Stuart ◽  
Roy M. Long

Many mitochondrial proteins are encoded by nuclear genes and after translation in the cytoplasm are imported via translocases in the outer and inner membranes, the TOM and TIM complexes, respectively. Here, we report the characterization of the mitochondrial protein, Mmp37p (YGR046w) and demonstrate its involvement in the process of protein import into mitochondria. Haploid cells deleted of MMP37 are viable but display a temperature-sensitive growth phenotype and are inviable in the absence of mitochondrial DNA. Mmp37p is located in the mitochondrial matrix where it is peripherally associated with the inner membrane. We show that Mmp37p has a role in the translocation of proteins across the mitochondrial inner membrane via the TIM23-PAM complex and further demonstrate that substrates containing a tightly folded domain in close proximity to their mitochondrial targeting sequences display a particular dependency on Mmp37p for mitochondrial import. Prior unfolding of the preprotein, or extension of the region between the targeting signal and the tightly folded domain, relieves their dependency for Mmp37p. Furthermore, evidence is presented to show that Mmp37 may affect the assembly state of the TIM23 complex. On the basis of these findings, we hypothesize that the presence of Mmp37p enhances the early stages of the TIM23 matrix import pathway to ensure engagement of incoming preproteins with the mtHsp70p/PAM complex, a step that is necessary to drive the unfolding and complete translocation of the preprotein into the matrix.


2010 ◽  
Vol 2010 ◽  
pp. 1-23 ◽  
Author(s):  
Josef Diblík ◽  
Denys Ya. Khusainov ◽  
Irina V. Grytsay ◽  
Zdenĕk Šmarda

Many processes are mathematically simulated by systems of discrete equations with quadratic right-hand sides. Their stability is thought of as a very important characterization of the process. In this paper, the method of Lyapunov functions is used to derive classes of stable quadratic discrete autonomous systems in a critical case in the presence of a simple eigenvalueλ=1of the matrix of linear terms. In addition to the stability investigation, we also estimate stability domains.


1989 ◽  
Vol 109 (5) ◽  
pp. 2157-2167 ◽  
Author(s):  
J D Saide ◽  
S Chin-Bow ◽  
J Hogan-Sheldon ◽  
L Busquets-Turner ◽  
J O Vigoreaux ◽  
...  

Twelve monoclonal antibodies have been raised against proteins in preparations of Z-disks isolated from Drosophila melanogaster flight muscle. The monoclonal antibodies that recognized Z-band components were identified by immunofluorescence microscopy of flight muscle myofibrils. These antibodies have identified three Z-disk antigens on immunoblots of myofibrillar proteins. Monoclonal antibodies alpha:1-4 recognize a 90-100-kD protein which we identify as alpha-actinin on the basis of cross-reactivity with antibodies raised against honeybee and vertebrate alpha-actinins. Monoclonal antibodies P:1-4 bind to the high molecular mass protein, projectin, a component of connecting filaments that link the ends of thick filaments to the Z-band in insect asynchronous flight muscles. The anti-projectin antibodies also stain synchronous muscle, but, surprisingly, the epitopes here are within the A-bands, not between the A- and Z-bands, as in flight muscle. Monoclonal antibodies Z(210):1-4 recognize a 210-kD protein that has not been previously shown to be a Z-band structural component. A fourth antigen, resolved as a doublet (approximately 400/600 kD) on immunoblots of Drosophila fibrillar proteins, is detected by a cross reacting antibody, Z(400):2, raised against a protein in isolated honeybee Z-disks. On Lowicryl sections of asynchronous flight muscle, indirect immunogold staining has localized alpha-actinin and the 210-kD protein throughout the matrix of the Z-band, projectin between the Z- and A-bands, and the 400/600-kD components at the I-band/Z-band junction. Drosophila alpha-actinin, projectin, and the 400/600-kD components share some antigenic determinants with corresponding honeybee proteins, but no honeybee protein interacts with any of the Z(210) antibodies.


Sign in / Sign up

Export Citation Format

Share Document