scholarly journals BRAF-Inhibitor-Induced Metabolic Alterations in A375 Melanoma Cells

Metabolites ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 777
Author(s):  
Prashant Karki ◽  
Shayne Sensenbach ◽  
Vahideh Angardi ◽  
Mehmet A. Orman

Acquired drug tolerance has been a major challenge in cancer therapy. Recent evidence has revealed the existence of slow-cycling persister cells that survive drug treatments and give rise to multi-drug-tolerant mutants in cancer. Cells in this dynamic persister state can escape drug treatment by undergoing various epigenetic changes, which may result in a transient metabolic rewiring. In this study, with the use of untargeted metabolomics and phenotype microarrays, we characterize the metabolic profiles of melanoma persister cells mediated by treatment with vemurafenib, a BRAF inhibitor. Our findings demonstrate that metabolites associated with phospholipid synthesis, pyrimidine, and one-carbon metabolism and branched-chain amino acid metabolism are significantly altered in vemurafenib persister cells when compared to the bulk cancer population. Our data also show that vemurafenib persisters have higher lactic acid consumption rates than control cells, further validating the existence of a unique metabolic reprogramming in these drug-tolerant cells. Determining the metabolic mechanisms underlying persister cell survival and maintenance will facilitate the development of novel treatment strategies that target persisters and enhance cancer therapy.

2019 ◽  
Vol 21 (Supplement_6) ◽  
pp. vi42-vi43
Author(s):  
Jasmin Sponagel ◽  
Shanshan Zhang ◽  
Prakash Chinnaiyan ◽  
Joshua Rubin ◽  
Joseph Ippolito

Abstract Glioblastoma (GBM) is the most common and aggressive brain tumor in adults. GBM occurs more commonly in males, but female patients survive significantly longer. Understanding the molecular mechanisms that underlie those sex differences could support novel treatment strategies. In this regard, we found that male and female GBM patient samples differ in their metabolite abundance and that male patients exhibit a significantly higher abundance of TCA cycle metabolites. We confirmed those findings in a murine model of GBM, which has previously yielded important insights into sexual dimorphism in GBM. Strikingly, sex differences in TCA cycle flux were entirely driven by glutamine flux, not glucose flux, suggesting a sex-specific role for glutamine in GBM. Metabolic manipulation through glutamine deprivation resulted in a greater growth inhibition in male GBM cells. Glutamine itself can be utilized for anabolic reactions or it can be converted to glutamate by glutaminase. Only male GBM cells were sensitive to pharmacological glutaminase inhibition with BPTES or CB-839, suggesting that male GBM cells are glutamate dependent while female GBM cells are not. Concordantly, we found significantly higher glutaminase levels in male GBM cells. Furthermore, we found that numerous metabolites (including NADH, ATP, and glutathione) involved in cellular processes downstream of glutamate were more abundant in male GBM cells. In contrast, female GBM cells were resistant to low glutamine conditions and glutaminase inhibitors unless glutamine-synthase activity was disrupted, suggesting that glutamine synthesis might play a more prominent role in female GBM. Together, these data indicate that male and female GBM differ in their metabolic adaptions. Male GBM utilize glutamate to fuel the TCA cycle and mitochondrial activity while female GBM synthesize and utilize glutamine itself. This sexual dimorphism in metabolic reprogramming reveals novel sex specific metabolic targets for GBM and underlines the importance of considering sex in metabolic targeting approaches.


Cancers ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 3067
Author(s):  
Kimia Ghannad-Zadeh ◽  
Sunit Das

Altered cell metabolism is a hallmark of cancer cell biology, and the adaptive metabolic strategies of cancer cells have been of recent interest to many groups. Metabolic reprogramming has been identified as a critical step in glial cell transformation, and the use of antimetabolites against glioblastoma has been investigated. One-carbon (1-C) metabolism and its associated biosynthetic pathways, particularly purine nucleotide synthesis, are critical for rapid proliferation and are altered in many cancers. Purine metabolism has also been identified as essential for glioma tumourigenesis. Additionally, alterations of 1-C-mediated purine synthesis have been identified as commonly present in brain tumour initiating cells (BTICs) and could serve as a phenotypic marker of cells responsible for tumour recurrence. Further research is required to elucidate mechanisms through which metabolic vulnerabilities may arise in BTICs and potential ways to therapeutically target these metabolic processes. This review aims to summarize the role of 1-C metabolism-associated vulnerabilities in glioblastoma tumourigenesis and progression and investigate the therapeutic potential of targeting this pathway in conjunction with other treatment strategies.


Cancers ◽  
2021 ◽  
Vol 13 (15) ◽  
pp. 3645
Author(s):  
Isabel Theresa Schobert ◽  
Lynn Jeanette Savic

With the increasing understanding of resistance mechanisms mediated by the metabolic reprogramming in cancer cells, there is a growing clinical interest in imaging technologies that allow for the non-invasive characterization of tumor metabolism and the interactions of cancer cells with the tumor microenvironment (TME) mediated through tumor metabolism. Specifically, tumor glycolysis and subsequent tissue acidosis in the realms of the Warburg effect may promote an immunosuppressive TME, causing a substantial barrier to the clinical efficacy of numerous immuno-oncologic treatments. Thus, imaging the varying individual compositions of the TME may provide a more accurate characterization of the individual tumor. This approach can help to identify the most suitable therapy for each individual patient and design new targeted treatment strategies that disable resistance mechanisms in liver cancer. This review article focuses on non-invasive positron-emission tomography (PET)- and MR-based imaging techniques that aim to visualize the crosstalk between tumor cells and their microenvironment in liver cancer mediated by tumor metabolism.


Children ◽  
2021 ◽  
Vol 8 (6) ◽  
pp. 482
Author(s):  
Irene Paraboschi ◽  
Laura Privitera ◽  
Gabriela Kramer-Marek ◽  
John Anderson ◽  
Stefano Giuliani

Neuroblastoma (NB) is the most common extracranial solid tumour in childhood, accounting for approximately 15% of all cancer-related deaths in the paediatric population1. It is characterised by heterogeneous clinical behaviour in neonates and often adverse outcomes in toddlers. The overall survival of children with high-risk disease is around 40–50% despite the aggressive treatment protocols consisting of intensive chemotherapy, surgery, radiation therapy and hematopoietic stem cell transplantation2,3. There is an ongoing research effort to increase NB’s cellular and molecular biology knowledge to translate essential findings into novel treatment strategies. This review aims to address new therapeutic modalities emerging from preclinical studies offering a unique translational opportunity for NB treatment.


Biomolecules ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 901
Author(s):  
Ramiz S. Ahmad ◽  
Timothy D. Eubank ◽  
Slawomir Lukomski ◽  
Brian A. Boone

Pancreatic ductal adenocarcinoma (PDAC) is a highly lethal malignancy with a five-year survival rate of only 9%. PDAC is characterized by a dense, fibrotic stroma composed of extracellular matrix (ECM) proteins. This desmoplastic stroma is a hallmark of PDAC, representing a significant physical barrier that is immunosuppressive and obstructs penetration of cytotoxic chemotherapy agents into the tumor microenvironment (TME). Additionally, dense ECM promotes hypoxia, making tumor cells refractive to radiation therapy and alters their metabolism, thereby supporting proliferation and survival. In this review, we outline the significant contribution of fibrosis to the pathogenesis of pancreatic cancer, with a focus on the cross talk between immune cells and pancreatic stellate cells that contribute to ECM deposition. We emphasize the cellular mechanisms by which neutrophils and macrophages, specifically, modulate the ECM in favor of PDAC-progression. Furthermore, we investigate how activated stellate cells and ECM influence immune cells and promote immunosuppression in PDAC. Finally, we summarize therapeutic strategies that target the stroma and hinder immune cell promotion of fibrogenesis, which have unfortunately led to mixed results. An enhanced understanding of the complex interactions between the pancreatic tumor ECM and immune cells may uncover novel treatment strategies that are desperately needed for this devastating disease.


Cells ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 1392
Author(s):  
Hidaya A. Kader ◽  
Muhammad Azeem ◽  
Suhib A. Jwayed ◽  
Aaesha Al-Shehhi ◽  
Attia Tabassum ◽  
...  

Atopic dermatitis (AD) is one of the most prevalent inflammatory disease among non-fatal skin diseases, affecting up to one fifth of the population in developed countries. AD is characterized by recurrent pruritic and localized eczema with seasonal fluctuations. AD initializes the phenomenon of atopic march, during which infant AD patients are predisposed to progressive secondary allergies such as allergic rhinitis, asthma, and food allergies. The pathophysiology of AD is complex; onset of the disease is caused by several factors, including strong genetic predisposition, disrupted epidermal barrier, and immune dysregulation. AD was initially characterized by defects in the innate immune system and a vigorous skewed adaptive Th2 response to environmental agents; there are compelling evidences that the disorder involves multiple immune pathways. Symptomatic palliative treatment is the only strategy to manage the disease and restore skin integrity. Researchers are trying to more precisely define the contribution of different AD genotypes and elucidate the role of various immune axes. In this review, we have summarized the current knowledge about the roles of innate and adaptive immune responsive cells in AD. In addition, current and novel treatment strategies for the management of AD are comprehensively described, including some ongoing clinical trials and promising therapeutic agents. This information will provide an asset towards identifying personalized targets for better therapeutic outcomes.


2021 ◽  
Vol 6 (1) ◽  
Author(s):  
Victoria Damerell ◽  
Michael S. Pepper ◽  
Sharon Prince

AbstractSarcomas are complex mesenchymal neoplasms with a poor prognosis. Their clinical management is highly challenging due to their heterogeneity and insensitivity to current treatments. Although there have been advances in understanding specific genomic alterations and genetic mutations driving sarcomagenesis, the underlying molecular mechanisms, which are likely to be unique for each sarcoma subtype, are not fully understood. This is in part due to a lack of consensus on the cells of origin, but there is now mounting evidence that they originate from mesenchymal stromal/stem cells (MSCs). To identify novel treatment strategies for sarcomas, research in recent years has adopted a mechanism-based search for molecular markers for targeted therapy which has included recapitulating sarcomagenesis using in vitro and in vivo MSC models. This review provides a comprehensive up to date overview of the molecular mechanisms that underpin sarcomagenesis, the contribution of MSCs to modelling sarcomagenesis in vivo, as well as novel topics such as the role of epithelial-to-mesenchymal-transition (EMT)/mesenchymal-to-epithelial-transition (MET) plasticity, exosomes, and microRNAs in sarcomagenesis. It also reviews current therapeutic options including ongoing pre-clinical and clinical studies for targeted sarcoma therapy and discusses new therapeutic avenues such as targeting recently identified molecular pathways and key transcription factors.


2020 ◽  
pp. 972-987
Author(s):  
Ramez N. Eskander ◽  
Julia Elvin ◽  
Laurie Gay ◽  
Jeffrey S. Ross ◽  
Vincent A. Miller ◽  
...  

PURPOSE High-grade neuroendocrine cervical cancer (HGNECC) is an uncommon malignancy with limited therapeutic options; treatment is patterned after the histologically similar small-cell lung cancer (SCLC). To better understand HGNECC biology, we report its genomic landscape. PATIENTS AND METHODS Ninety-seven patients with HGNECC underwent comprehensive genomic profiling (182-315 genes). These results were subsequently compared with a cohort of 1,800 SCLCs. RESULTS The median age of patients with HGNECC was 40.5 years; 83 patients (85.6%) harbored high-risk human papillomavirus (HPV). Overall, 294 genomic alterations (GAs) were identified (median, 2 GAs/sample; average, 3.0 GAs/sample, range, 0-25 GAs/sample) in 109 distinct genes. The most frequently altered genes were PIK3CA (19.6% of cohort), MYC (15.5%), TP53 (15.5%), and PTEN (14.4%). RB1 GAs occurred in 4% versus 32% of HPV-positive versus HPV-negative tumors ( P < .0001). GAs in HGNECC involved the following pathways: PI3K/AKT/mTOR (41.2%); RAS/MEK (11.3%); homologous recombination (9.3%); and ERBB (7.2%). Two tumors (2.1%) had high tumor mutational burden (TMB; both with MSH2 alterations); 16 (16.5%) had intermediate TMB. Seventy-one patients (73%) had ≥ 1 alteration that was theoretically druggable. Comparing HGNECC with SCLC, significant differences in TMB, microsatellite instability, HPV-positive status, and in PIK3CA, MYC, PTEN, TP53, ARID1A, and RB1 alteration rates were found. CONCLUSION This large cohort of patients with HGNECC demonstrated a genomic landscape distinct from SCLC, calling into question the biologic and therapeutic relevance of the histologic similarities between the entities. Furthermore, 73% of HGNECC tumors had potentially actionable alterations, suggesting novel treatment strategies for this aggressive malignancy.


2016 ◽  
Vol 12 (6) ◽  
pp. 855-870 ◽  
Author(s):  
Chanaka D Wickramasinghe ◽  
Kim-Lien Nguyen ◽  
Karol E Watson ◽  
Gabriel Vorobiof ◽  
Eric H Yang

Sign in / Sign up

Export Citation Format

Share Document