scholarly journals Low Cost AIP Design in 5G Flexible Antenna Phase Array System Application

Micromachines ◽  
2020 ◽  
Vol 11 (9) ◽  
pp. 851
Author(s):  
Wei-Shin Tung ◽  
Wei-Yuan Chiang ◽  
Chih-Kai Liu ◽  
Chiung-An Chen ◽  
Pei-Zong Rao ◽  
...  

In this paper, a low cost 28 GHz Antenna-in-Package (AIP) for a 5G communication system is designed and investigated. The antenna is implemented on a low-cost FR4 substrate with a phase shift control integrated circuit, AnokiWave phasor integrated circuit (IC). The unit cell where the array antenna and IC are integrated in the same plate constructs a flexible phase array system. Using the AIP unit cell, the desired antenna array can be created, such as 2 × 8, 8 × 8 or 2 × 64 arrays. The study design proposed in this study is a 2 × 2 unit cell structure with dimensions of 18 mm × 14 mm × 0.71 mm. The return loss at a 10 dB bandwidth is 26.5–29.5 GHz while the peak gain of the unit cell achieved 14.4 dBi at 28 GHz.

2015 ◽  
Vol 2015 ◽  
pp. 1-9 ◽  
Author(s):  
Muhammad Tauseef Asim ◽  
Mushtaq Ahmed

A dual layer periodically patterned metamaterial inspired antenna on a low cost FR4 substrate is designed, simulated, fabricated, and tested. The eigenmode dispersion simulations are performed indicating the left handed metamaterial characteristics and are tunable with substrate permittivity. The same metamaterial unit cell structure is utilized to fabricate a metascreen. This metascreen is applied below the proposed metamaterial antenna and next used as superstrate above a simple patch to study the effects on impedance bandwidth, gain, and radiation patterns. The experimental results of these antennas are very good and closely match with the simulations. More importantly, the resonance for the proposed metamaterial antenna with metascreen occurs at the left handed (LH) eigenfrequency of the metamaterial unit cell structure. The measured −10 dB bandwidths are 14.56% and 22.86% for the metamaterial antenna with single and double metascreens, respectively. The metascreens over the simple patch show adjacent dual band response. The first and second bands have measured −10 dB bandwidths of 9.6% and 16.66%. The simulated peak gain and radiation efficiency are 1.83 dBi and 74%, respectively. The radiation patterns are also very good and could be useful in the UWB wireless applications.


Author(s):  
José Capmany ◽  
Daniel Pérez

Programmable Integrated Photonics (PIP) is a new paradigm that aims at designing common integrated optical hardware configurations, which by suitable programming can implement a variety of functionalities that, in turn, can be exploited as basic operations in many application fields. Programmability enables by means of external control signals both chip reconfiguration for multifunction operation as well as chip stabilization against non-ideal operation due to fluctuations in environmental conditions and fabrication errors. Programming also allows activating parts of the chip, which are not essential for the implementation of a given functionality but can be of help in reducing noise levels through the diversion of undesired reflections. After some years where the Application Specific Photonic Integrated Circuit (ASPIC) paradigm has completely dominated the field of integrated optics, there is an increasing interest in PIP justified by the surge of a number of emerging applications that are and will be calling for true flexibility, reconfigurability as well as low-cost, compact and low-power consuming devices. This book aims to provide a comprehensive introduction to this emergent field covering aspects that range from the basic aspects of technologies and building photonic component blocks to the design alternatives and principles of complex programmable photonics circuits, their limiting factors, techniques for characterization and performance monitoring/control and their salient applications both in the classical as well as in the quantum information fields. The book concentrates and focuses mainly on the distinctive features of programmable photonics as compared to more traditional ASPIC approaches.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Mohammad Tariqul Islam ◽  
Md. Moniruzzaman ◽  
Touhidul Alam ◽  
Md Samsuzzaman ◽  
Qutaiba A. Razouqi ◽  
...  

AbstractIn this paper, a meander-lines-based epsilon negative (ENG) metamaterial (MTM) with a high effective medium ratio (EMR) and near-zero refractive index (NZI) is designed and investigated for multiband microwave applications. The metamaterial unit cell is a modification of the conventional square split-ring resonator in which the meander line concept is utilized. The meander line helps to increase the electrical length of the rings and provides strong multiple resonances within a small dimension. The unit cell of proposed MTM is initiated on a low-cost FR4 substrate of 1.5 mm thick and electrical dimension of 0.06λ × 0.06λ, where wavelength, λ is calculated at the lowest resonance frequency (2.48 GHz). The MTM provides four major resonances of transmission coefficient (S21) at 2.48, 4.28, 9.36, and 13.7 GHz covering S, C, X, and Ku bands. It shows negative permittivity, near-zero permeability, and near-zero refractive index in the vicinity of these resonances. The equivalent circuit is designed and modeled in Advanced Design System (ADS) software. The simulated S21 of the MTM unit cell is compared with the measured one and both show close similarity. The array performance of the MTM is also evaluated by using 2 × 2, 4 × 4, and 8 × 8 arrays that show close resemblance with the unit cell. The MTM offers a high effective medium ratio (EMR) of 15.1, indicating the design's compactness. The frequency hopping characteristics of the proposed MTM is investigated by open and short-circuited the three outer rings split gaps by using three switches. Eight different combinations of the switching states provide eight different sets of multiband resonances within 2–18 GHz; those give the flexibility of using the proposed MTM operating in various frequency bands. For its small dimension, NZI, high EMR, and frequency hopping characteristics through switching, this metamaterial can be utilized for multiband microwave applications, especially to enhance the gain of multiband antennas.


Polymers ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 785
Author(s):  
Chow Shing Shin ◽  
Yu Chia Chang

Lattice structures are superior to stochastic foams in mechanical properties and are finding increasing applications. Their properties can be tailored in a wide range through adjusting the design and dimensions of the unit cell, changing the constituent materials as well as forming into hierarchical structures. In order to achieve more levels of hierarchy, the dimensions of the fundamental lattice have to be small enough. Although lattice size of several microns can be fabricated using the two-photon polymerization technique, sophisticated and costly equipment is required. To balance cost and performance, a low-cost high resolution micro-stereolithographic system has been developed in this work based on a commercial digital light processing (DLP) projector. Unit cell lengths as small as 100 μm have been successfully fabricated. Decreasing the unit cell size from 150 to 100 μm increased the compressive stiffness by 26%. Different pretreatments to facilitate the electroless plating of nickel on the lattice structure have been attempted. A pretreatment of dip coating in a graphene suspension is the most successful and increased the strength and stiffness by 5.3 and 3.6 times, respectively. Even a very light and incomplete nickel plating in the interior has increase the structural stiffness and strength by more than twofold.


2006 ◽  
Vol 44 (8) ◽  
pp. 102-110 ◽  
Author(s):  
I. Sever ◽  
S. Lo ◽  
Ssu-Pin Ma ◽  
P. Jang ◽  
A. Zou ◽  
...  

Author(s):  
Hanh

In this work, ZnO nanorods (NRs) were successfully grown on printed circuit board substrates (PCBs) by utilizing a one-step, seedless, low-cost hydrothermal method. It was shown that by implementing a galvanic cell structure in an aqueous solution of 80 mM of zinc nitrate hexahydrate and hexamethylenetetramine, ZnO NRs can directly grow on the PCBs substrate without the assistance of a seed layer. The effect of hydrothermal time on the surface morphologies, and the crystallinity of the as-grown ZnO nanorods (NRs) was also investigated. The as-grown ZnO NRs also exhibited a significant enhancement in vertical growth and their crystallinity with 5 hour growth.


2018 ◽  
Vol 7 (2.6) ◽  
pp. 217
Author(s):  
B Sekharbabu ◽  
K Narsimha Reddy ◽  
S Sreenu

In this paper a -3 dB, 90-degreephase shift RF quadrature patch hybrid coupler is designed to operate at 2.4GHz. Hybrid coupler is a four-port device, that’s accustomed split a signaling with a resultant 90degrees’ section shift between output signals whereas maintaining high isolation between the output ports. The RF quadrature patch hybrid coupler is used in various radio frequency applications including mixers, power combiners, dividers, modulators and amplifiers. The desired hybrid coupler is designed using FR-4 substrate with 1.6mm height in High Frequency Structure Simulation (HFSS) and the same is fabricated and tested. The designed Hybrid coupler is examined in terms of parameters like insertion Loss, coupling factor and return Loss. The simulation and measurement results are compared. Major advantages of the RF quadrature patch hybrid couplers are that they are compatible with integrated circuit technology.


Author(s):  
Stewart Smith ◽  
Hancong Wu ◽  
Jiabin Jia

This poster reports the design, implementation and testing of a portable and inexpensive bio-impedance measurement system intended for electrical impedance tomography (EIT) in cell cultures. The system is based on the AD5933 impedance analyser integrated circuit with additional circuitry to enable four-terminal measurement. Initial results of impedance measurements are reported along with an EIT image reconstructed using the open source EIDORS package.


2014 ◽  
Vol 70 (a1) ◽  
pp. C1135-C1135
Author(s):  
Patrik Ahvenainen ◽  
Ritva Serimaa

Cellulose is the most abundant biopolymer on Earth and hence it has enormous potential as a source of renewable energy. The nanoscale properties of cellulose are also import for the wood and papermaking industries. The atomic level structure of naturally occurring cellulose Iβ allomorph is well known [1] and this atomistic model is employed in this study for the cellulose unit cell structure. The cellulose crystallinity cannot be measured directly with scattering methods, but the crystallinity of the sample can be estimated by fitting models of crystalline and amorphous contributions to the sample intensity profile. The crystallinity fitting can be enhanced by improving the cellulose fitting model or the amorphous model. We focus on the cellulose crystallite model. The nanoscale level organization of crystalline cellulose in different plant materials is less well established that the unit cell structure of cellulose Iβ. Information on the texture of the sample is obtained efficiently by measuring the sample with a two-dimensional detector. The two-dimensional diffraction pattern can be used to obtain a wealth of information in one measurement, including the crystallite size, crystallite orientation and the crystallinity of the sample. The small size of cellulose crystallites in the wood cell wall limits the information obtainable from the diffraction pattern as the diffraction peaks widen and overlap. The overlapping of certain diffraction peaks can be studied at least qualitatively by computing the diffraction patterns from crystallite models of varying dimensions. Different models for cellulose crystallite have been suggested in the literature, such as the 36 chain model [2]. We investigate how the crystallinity fitting is influenced by the selected cellulose crystallite model and evaluate the suitability of different models to experimental X-ray scattering data of plant material, wood and highly crystalline cellulose.


2011 ◽  
Vol 20 (03) ◽  
pp. 471-484 ◽  
Author(s):  
LIANG ZUO ◽  
ROBERT GREENWELL ◽  
SYED K. ISLAM ◽  
M. A. HUQUE ◽  
BENJAMIN J. BLALOCK ◽  
...  

In recent years, increasing demand for hybrid electric vehicles (HEVs) has generated the need for reliable and low-cost high-temperature electronics which can operate at the high temperatures under the hood of these vehicles. A high-voltage and high temperature gate-driver integrated circuit for SiC FET switches with short circuit protection has been designed and implemented in a 0.8-micron silicon-on-insulator (SOI) high-voltage process. The prototype chip has been successfully tested up to 200°C ambient temperature without any heat sink or cooling mechanism. This gate-driver chip can drive SiC power FETs of the DC-DC converters in a HEV, and future chip modifications will allow it to drive the SiC power FETs of the traction drive inverter. The converter modules along with the gate-driver chip will be placed very close to the engine where the temperature can reach up to 175ΰC. Successful operation of the chip at this temperature with or without minimal heat sink and without liquid cooling will help achieve greater power-to-volume as well as power-to-weight ratios for the power electronics module.


Sign in / Sign up

Export Citation Format

Share Document