scholarly journals A Comparative Study of the Adherent-Invasive Escherichia coli Population and Gut Microbiota of Healthy Vegans versus Omnivores

2020 ◽  
Vol 8 (8) ◽  
pp. 1165
Author(s):  
Rebecca Veca ◽  
Christian O’Dea ◽  
Jarred Burke ◽  
Eva Hatje ◽  
Anna Kuballa ◽  
...  

Adherent-invasive Escherichia coli (AIEC) strains carry virulence genes (VGs) which are rarely found in strains other than E. coli. These strains are abundantly found in gut mucosa of patients with inflammatory bowel disease (IBD); however, it is not clear whether their prevalence in the gut is affected by the diet of the individual. Therefore, in this study, we compared the population structure of E. coli and the prevalence of AIEC as well as the composition of gut microbiota in fecal samples of healthy participants (n = 61) on either a vegan (n = 34) or omnivore (n = 27) diet to determine whether diet is associated with the presence of AIEC. From each participant, 28 colonies of E. coli were typed using Random Amplified Polymorphic DNA (RAPD)–PCR. A representative of each common type within an individual was tested for the presence of six AIEC-associated VGs. Whole genomic DNA of the gut microbiota was also analyzed for its diversity profiles, utilizing the V5-V6 region of the16S rRNA gene sequence. There were no significant differences in the abundance and diversity of E. coli between the two diet groups. The occurrence of AIEC-associated VGs was also similar among the two groups. However, the diversity of fecal microbiota in vegans was generally higher than omnivores, with Prevotella and Bacteroides dominant in both groups. Whilst 88 microbial taxa were present in both diet groups, 28 taxa were unique to vegans, compared to seven unique taxa in the omnivores. Our results indicate that a vegan diet may not affect the number and diversity of E. coli populations and AIEC prevalence compared to omnivores. The dominance of Prevotella and Bacteroides among omnivores might be accounted for the effect of diet in these groups.

2019 ◽  
Vol 63 (5) ◽  
Author(s):  
Mehreen Anjum ◽  
Jonas Stenløkke Madsen ◽  
Joseph Nesme ◽  
Bimal Jana ◽  
Maria Wiese ◽  
...  

ABSTRACT The gut is a hot spot for transfer of antibiotic resistance genes from ingested exogenous bacteria to the indigenous microbiota. The objective of this study was to determine the fate of two nearly identical blaCMY-2-harboring plasmids introduced into the human fecal microbiota by two Escherichia coli strains isolated from a human and from poultry meat. The chromosome and the CMY-2-encoding plasmid of both strains were labeled with distinct fluorescent markers (mCherry and green fluorescent protein [GFP]), allowing fluorescence-activated cell sorting (FACS)-based tracking of the strain and the resident bacteria that have acquired its plasmid. Each strain was introduced into an established in vitro gut model (CoMiniGut) inoculated with individual feces from ten healthy volunteers. Fecal samples collected 2, 6, and 24 h after strain inoculation were analyzed by FACS and plate counts. Although the human strain survived better than the poultry meat strain, both strains transferred their plasmids to the fecal microbiota at concentrations as low as 102 CFU/ml. Strain survival and plasmid transfer varied significantly depending on inoculum concentration and individual fecal microbiota. Identification of transconjugants by 16S rRNA gene sequencing and matrix-assisted laser desorption ionization–time of flight mass spectrometry (MALDI-TOF MS) revealed that the plasmids were predominantly acquired by Enterobacteriaceae species, such as E. coli and Hafnia alvei. Our experimental data demonstrate that exogenous E. coli of human or animal origin can readily transfer CMY-2-encoding IncI1 plasmids to the human fecal microbiota. Small amounts of the exogenous strain are sufficient to ensure plasmid transfer if the strain is able to survive the gastric environment.


mSystems ◽  
2018 ◽  
Vol 3 (5) ◽  
Author(s):  
Saisai Cheng ◽  
Xin Ma ◽  
Shijie Geng ◽  
Xuemei Jiang ◽  
Yuan Li ◽  
...  

ABSTRACT Fecal microbiota transplantation (FMT) is one of the most effective ways to regulate the gut microbiota. Here, we investigated the effect of exogenous fecal microbiota on gut function from the perspective of analysis of the mucosal proteomes in a piglet model. A total of 289 differentially expressed proteins were annotated with 4,068 gene ontology (GO) function entries in the intestinal mucosa, and the levels of autophagy-related proteins in the forkhead box O (FoxO) signaling pathway were increased whereas the levels of proteins related to inflammation response were decreased in the recipient. Then, to assess the alleviation of epithelial injury in the Escherichia coli K88-infected piglets following FMT, intestinal microbiome-metabolome responses were determined. 16S rRNA gene sequencing showed that the abundances of beneficial bacteria, such as Lactobacillus and Succinivibrio, were increased whereas those of Enterobacteriaceae and Proteobacteria bacteria were decreased in the infected piglets following FMT. Metabolomic analysis revealed that levels of 58 metabolites, such as lactic acid and succinic acid, were enhanced in the intestinal lumen and that seven metabolic pathways, such as branched-chain amino acid metabolism pathways, were upregulated in the infected piglets following FMT. In concordance with the metabolome data, results of metagenomics prediction analysis also demonstrated that FMT modulated the metabolic functions of gut microbiota associated with linoleic acid metabolism. In addition, intestinal morphology was improved, a result that coincided with the decrease of intestinal permeability and the enhancement of mucins and mucosal expression of tight junction proteins in the recipient. Taken together, the results showed that FMT triggered intestinal mucosal protective autophagy and alleviated gut barrier injury through alteration of the gut microbial structure. IMPORTANCE The gut microbiota plays a crucial role in human and animal health, and its disorder causes multiple diseases. Over the past decade, FMT has gained increasing attention due to the success in treating Clostridium difficile infection (CDI) and inflammatory bowel disease (IBD). Although FMT appears to be effective, how FMT functions in the recipient remains unknown. Whether FMT exerts this beneficial effect through a series of changes in the host organism caused by alteration of gut microbial structure is also not known. In the present study, newborn piglets and E. coli K88-infected piglets were selected as models to explore the interplay between host and gut microbiota following FMT. Our results showed that FMT triggered intestinal mucosal autophagy and alleviated gut barrier injury caused by E. coli K88. This report provides a theoretical basis for the use of FMT as a viable therapeutic method for gut microbial regulation.


2021 ◽  
Vol 9 (7) ◽  
pp. 1459
Author(s):  
Mohamed Rhouma ◽  
Charlotte Braley ◽  
William Thériault ◽  
Alexandre Thibodeau ◽  
Sylvain Quessy ◽  
...  

The intestinal microbiota plays several important roles in pig health and growth. The aim of the current study was to characterize the changes in the fecal microbiota diversity and composition of weaned piglets following an oral challenge with an ETEC: F4 strain and/or a treatment with colistin sulfate (CS). Twenty-eight piglets were used in this experiment and were divided into four groups: challenged untreated, challenged treated, unchallenged treated, and unchallenged untreated. Rectal swab samples were collected at five sampling times throughout the study. Total genomic DNA was used to assess the fecal microbiota diversity and composition using the V4 region of the 16S rRNA gene. The relative abundance, the composition, and the community structure of piglet fecal microbiota was highly affected by the ETEC: F4 challenge throughout the experiment, while the oral treatment with CS, a narrow spectrum antibiotic, resulted in a significant decrease of E. coli/Shigella populations during the treatment period only. This study was the first to identify some gut microbiota subgroups (e.g., Streptococcus, Lachnospiraceae) that are associated with healthy piglets as compared to ETEC: F4 challenged animals. These key findings might contribute to the development of alternative strategies to reduce the use of antimicrobials in the control of post-weaning diarrhea in pigs.


2010 ◽  
Vol 59 (3) ◽  
pp. 207-212 ◽  
Author(s):  
M.I. ABOU-DOBARA ◽  
M.A. DEYAB ◽  
E.M. ELSAWY ◽  
H.H. MOHAMED

Thirty nine isolates of Escherichia coli, twenty two isolates of Klebsiella pneumoniae and sixteen isolates of Pseudomonas aeruginosa isolated from urinary tract infected patients were analyzed by antimicrobial susceptibility typing and random amplified polymorphic DNA (RAPD)-PCR. Antibiotic susceptibility testing was carried out by microdilution and E Test methods. From the antibiotic susceptibility, ten patterns were recorded (four for E. coli, three for K. pneumoniae and three for P. aeruginosa respectively). Furthermore, genotyping showed seventeen RAPD patterns (seven for E. coli, five for K. pneumoniae and five for P. aeruginosa respectively). In this study, differentiation of strains of E. coli, K. pneumoniae and P. aeruginosa from nosocomial infection was possible with the use of RAPD.


2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Yao Su ◽  
Hong-Kun Wang ◽  
Xu-Pei Gan ◽  
Li Chen ◽  
Yan-Nan Cao ◽  
...  

Abstract Background The causes of gestational diabetes mellitus (GDM) are still unclear. Recent studies have found that the imbalance of the gut microbiome could lead to disorders of human metabolism and immune system, resulting in GDM. This study aims to reveal the different gut compositions between GDM and normoglycemic pregnant women and find the relationship between gut microbiota and GDM. Methods Fecal microbiota profiles from women with GDM (n = 21) and normoglycemic women (n = 32) were assessed by 16S rRNA gene sequencing. Fasting metabolic hormone concentrations were measured using multiplex ELISA. Results Metabolic hormone levels, microbiome profiles, and inferred functional characteristics differed between women with GDM and healthy women. Additionally, four phyla and seven genera levels have different correlations with plasma glucose and insulin levels. Corynebacteriales (order), Nocardiaceae (family), Desulfovibrionaceae (family), Rhodococcus (genus), and Bacteroidetes (phylum) may be the taxonomic biomarkers of GDM. Microbial gene functions related to amino sugar and nucleotide sugar metabolism were found to be enriched in patients with GDM. Conclusion Our study indicated that dysbiosis of the gut microbiome exists in patients with GDM in the second trimester of pregnancy, and gut microbiota might be a potential diagnostic biomarker for the diagnosis, prevention, and treatment of GDM.


2012 ◽  
Vol 78 (19) ◽  
pp. 6799-6803 ◽  
Author(s):  
Sam Abraham ◽  
David M. Gordon ◽  
James Chin ◽  
Huub J. M. Brouwers ◽  
Peter Njuguna ◽  
...  

ABSTRACTThe role ofEscherichia colias a pathogen has been the focus of considerable study, while much less is known about it as a commensal and how it adapts to and colonizes different environmental niches within the mammalian gut. In this study, we characterizeEscherichia coliorganisms (n= 146) isolated from different regions of the intestinal tracts of eight pigs (dueodenum, ileum, colon, and feces). The isolates were typed using the method of random amplified polymorphic DNA (RAPD) and screened for the presence of bacteriocin genes and plasmid replicon types. Molecular analysis of variance using the RAPD data showed thatE. coliisolates are nonrandomly distributed among different gut regions, and that gut region accounted for 25% (P< 0.001) of the observed variation among strains. Bacteriocin screening revealed that a bacteriocin gene was detected in 45% of the isolates, with 43% carrying colicin genes and 3% carrying microcin genes. Of the bacteriocins observed (H47, E3, E1, E2, E7, Ia/Ib, and B/M), the frequency with which they were detected varied with respect to gut region for the colicins E2, E7, Ia/Ib, and B/M. The plasmid replicon typing gave rise to 25 profiles from the 13 Inc types detected. Inc F types were detected most frequently, followed by Inc HI1 and N types. Of the Inc types detected, 7 were nonrandomly distributed among isolates from the different regions of the gut. The results of this study indicate that not only may the different regions of the gastrointestinal tract harbor different strains ofE. colibut also that strains from different regions have different characteristics.


Nutrients ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 3194
Author(s):  
Jing Wang ◽  
Yong Chen ◽  
Xiaosong Hu ◽  
Fengqin Feng ◽  
Luyun Cai ◽  
...  

The beneficial effects of ginger polyphenols have been extensively reported. However, their metabolic characteristics and health effects on gut microbiota are poor understood. The purpose of this study was to investigate the digestion stability of ginger polyphenols and their prebiotic effects on gut microbiota by simulating digestion and fermentation in vitro. Following simulated digestion in vitro, 85% of the polyphenols were still detectable, and the main polyphenol constituents identified in ginger extract are 6-, 8-, and 10-gingerols and 6-shogaol in the digestive fluids. After batch fermentation, the changes in microbial populations were measured by 16S rRNA gene Illumina MiSeq sequencing. In mixed-culture fermentation with fecal inoculate, digested ginger extract (GE) significantly modulated the fecal microbiota structure and promoted the growth of some beneficial bacterial populations, such as Bifidobacterium and Enterococcus. Furthermore, incubation with GE could elevate the levels of short-chain fatty acids (SCFAs) accompanied by a decrease in the pH value. Additionally, the quantitative PCR results showed that 6-gingerol (6G), as the main polyphenol in GE, increased the abundance of Bifidobacterium significantly. Therefore, 6G is expected to be a potential prebiotic that improves human health by promoting gut health.


2019 ◽  
Vol 3 (Supplement_1) ◽  
Author(s):  
Mei Wang ◽  
Brooke Smith ◽  
Brock Adams ◽  
Miller Tran ◽  
Ryan Dilger ◽  
...  

Abstract Objectives Enterotoxigenic Escherichia coli (ETEC) are an important cause of diarrhea in human infants and young farm animals. Osteopontin (OPN), a glycoprotein present in high concentration in human milk, has immunomodulatory functions, which could indirectly impact the microbiota. Furthermore, a previous study has shown fecal microbiota composition differs between wild-type and OPN knockout mice. Herein, the effects of OPN-enriched algae on the gut microbiota composition and volatile fatty acid (VFA) concentrations of ETEC-infected piglets were assessed. Methods Naturally-farrowed piglets were sow-reared for 21 days and then randomized to two weaning diets: WT (formula + 1% wild-type algae) or OPN (formula + 1% OPN-enriched algae). On postnatal day (PND) 31, all piglets were infected orally with a live culture of ETEC (1010 colony-forming unit/3 mL dose) daily for three consecutive days. On PND 41, ascending colon (AC) contents were collected. Gut microbiota was assessed by sequencing V3-V4 regions of 16S rRNA gene and VFAs were determined by gas chromatography. Alpha-diversity and VFAs were analyzed using PROC MIXED procedure of SAS. Beta-diversity was evaluated by permutational multivariate analysis of variance (PERMANOVA) and differential abundance analysis on the bacterial genera was performed using DESeq2 package of R. Results Shannon indices were lower in the AC contents of OPN piglets compared to WT piglets. The overall colonic microbiota of OPN piglets differed from that of WT piglets (PERMANOVA P = 0.015). At genus level, OPN-enriched algae increased the abundance of Streptococcus, decreased the abundances of Sutterella, Candidatus Soleaferrea, dga-11 gut group, Rikenellaceae RC9 gut group, Ruminococcaceae UCG-010, unculturedRuminococcaceae, Prevotella 2 and 7 compared to piglets consuming wild-type algae (P < 0. 05). OPN piglets also had higher (P < 0.05) concentrations of acetate, propionate, butyrate and valerate compared to WT. Conclusions In ETEC infected piglets, 1% OPN-enriched algae decreased alpha-diversity and modulated the microbiota composition and VFA profiles compared to 1% WT algae. Other studies have shown that OPN inhibits biofilm formation in vitro, but future research is needed to assess in vivo microbiome-modulation mechanisms. Funding Sources Triton Algae Innovations.


2015 ◽  
Vol 59 (9) ◽  
pp. 5171-5180 ◽  
Author(s):  
M. A. Fleury ◽  
G. Mourand ◽  
E. Jouy ◽  
F. Touzain ◽  
L. Le Devendec ◽  
...  

ABSTRACTResistance to extended-spectrum cephalosporins (ESCs) is an important health concern. Here, we studied the impact of the administration of a long-acting form of ceftiofur on the pig gut microbiota and ESC resistance inEscherichia coli. Pigs were orally inoculated with an ESC-resistantE. coliM63 strain harboring a conjugative plasmid carrying a gene conferring resistance,blaCTX-M-1. On the same day, they were given or not a unique injection of ceftiofur. Fecal microbiota were studied using quantitative PCR analysis of the main bacterial groups and quantification of short-chain fatty acids.E. coliand ESC-resistantE. coliwere determined by culture methods, and the ESC-resistantE. coliisolates were characterized. The copies of theblaCTX-M-1gene were quantified. After ceftiofur injection, the main change in gut microbiota was the significant but transitory decrease in theE. colipopulation. Acetate and butyrate levels were significantly lower in the treated group. In all inoculated groups,E. coliM63 persisted in most pigs, and theblaCTX-M-1gene was transferred to otherE. coli. Culture and PCR results showed that the ceftiofur-treated group shed significantly more resistant strains 1 and 3 days after ESC injection. Thereafter, on most dates, there were no differences between the groups, but notably, one pig in the nontreated group regularly excreted very high numbers of ESC-resistantE. coli, probably leading to a higher contamination level in its pen. In conclusion, the use of ESCs, and also the presence of high-shedding animals, are important features in the spread of ESC resistance.


2020 ◽  
Vol 52 (12) ◽  
pp. 1959-1975
Author(s):  
Yu Wang ◽  
Weifan Yao ◽  
Bo Li ◽  
Shiyun Qian ◽  
Binbin Wei ◽  
...  

AbstractGut microbiota dysbiosis has a significant role in the pathogenesis of metabolic diseases, including obesity. Nuciferine (NUC) is a main bioactive component in the lotus leaf that has been used as food in China since ancient times. Here, we examined whether the anti-obesity effects of NUC are related to modulations in the gut microbiota. Using an obese rat model fed a HFD for 8 weeks, we show that NUC supplementation of HFD rats prevents weight gain, reduces fat accumulation, and ameliorates lipid metabolic disorders. Furthermore, 16S rRNA gene sequencing of the fecal microbiota suggested that NUC changed the diversity and composition of the gut microbiota in HFD-fed rats. In particular, NUC decreased the ratio of the phyla Firmicutes/Bacteroidetes, the relative abundance of the LPS-producing genus Desulfovibrio and bacteria involved in lipid metabolism, whereas it increased the relative abundance of SCFA-producing bacteria in HFD-fed rats. Predicted functional analysis of microbial communities showed that NUC modified genes involved in LPS biosynthesis and lipid metabolism. In addition, serum metabolomics analysis revealed that NUC effectively improved HFD-induced disorders of endogenous metabolism, especially lipid metabolism. Notably, NUC promoted SCFA production and enhanced intestinal integrity, leading to lower blood endotoxemia to reduce inflammation in HFD-fed rats. Together, the anti-obesity effects of NUC may be related to modulations in the composition and potential function of gut microbiota, improvement in intestinal barrier integrity and prevention of chronic low-grade inflammation. This research may provide support for the application of NUC in the prevention and treatment of obesity.


Sign in / Sign up

Export Citation Format

Share Document