scholarly journals Comparison of Physicochemical Properties of Starches from Flesh and Peel of Green Banana Fruit

Molecules ◽  
2018 ◽  
Vol 23 (9) ◽  
pp. 2312 ◽  
Author(s):  
Zheng Li ◽  
Ke Guo ◽  
Lingshang Lin ◽  
Wei He ◽  
Long Zhang ◽  
...  

Green banana fruit is an important starch resource that consists of flesh and peel. The physicochemical properties of flesh starch have been widely studied; however, those of peel starch have hardly been studied, leading to the waste of peel. In this study, the physicochemical properties of the starches from the flesh and peel of green banana fruit were investigated and compared. The dry flesh and peel had 69.5% and 22.6% starch content, respectively. The starch had oval and irregular granules with eccentric hila. Their starches had similar bimodal size distribution; the volume-weighted mean diameter was approximate 17 μm, and the peel starch had a slightly smaller granule size than the flesh starch. The maximum absorption wavelength was higher in peel starch than in flesh starch. The apparent amylose content of flesh and peel starch was 21.3% and 25.7%, respectively. The flesh and peel starches both exhibited B-type crystalline structures and had similar relative crystallinity, short-range ordered degrees, and lamellar structures. The swelling power was similar between flesh and peel starches, but the water solubility was higher in peel starch than in flesh starch at 95 °C. The peel starch had a higher gelatinization temperature than flesh starch, but their gelatinization temperature range and enthalpy were similar. Both flesh and peel starches showed a diphasic hydrolysis dynamic, but peel starch had higher resistance to porcine pancreatic α-amylase hydrolysis than flesh starch. The contents of rapidly digestible starch, slowly digestible starch, and the resistant starch of flesh and peel were 1.7%, 4.3%, 94.1% and 1.4%, 3.4%, 95.2%, respectively, for native starch, and 73.0%, 5.1%, 21.9%, and 72.3%, 4.5%, 23.2%, respectively, for gelatinized starch.

Molecules ◽  
2018 ◽  
Vol 23 (9) ◽  
pp. 2132 ◽  
Author(s):  
Juan Wang ◽  
Ke Guo ◽  
Xiaoxu Fan ◽  
Gongneng Feng ◽  
Cunxu Wei

The dry root tuber of Apios fortunei contained about 75% starch, indicating that it is an important starch resource. Starch displayed spherical, polygonal, and ellipsoidal granules with central hila. Granule sizes ranged from 3 to 30 μm with a 9.6 μm volume-weighted mean diameter. The starch had 35% apparent amylose content and exhibited CA-type crystalline structure with 25.9% relative crystallinity. The short-range ordered degree in the granule external region was approximately 0.65, and the lamellar thickness was approximately 9.6 nm. The swelling power and water solubility began to increase from 70 °C and reached 28.7 g/g and 10.8% at 95 °C. Starch had typical bimodal thermal curve in water with gelatinization temperatures from 61.8 to 83.9 °C. The 7% (w/w) starch-water slurry had peak, hot, breakdown, final, and setback viscosities of 1689, 1420, 269, 2103, and 683 mPa s, respectively. Rapidly digestible starch, slowly digestible starch, and resistant starch were 6.04%, 10.96%, and 83.00% in native starch; 83.16%, 15.23%, and 1.61% in gelatinized starch; and 78.13%, 17.88%, and 3.99% in retrograded starch, respectively. The above physicochemical properties of A. fortunei starch were compared with those of maize A-type starch, potato B-type starch, and pea C-type starch. The hierarchical cluster analysis based on starch structural and functional property parameters showed that A. fortunei and pea starches had similar physicochemical properties and were more related to maize starch than potato starch.


2021 ◽  
Author(s):  
Leilei Wang ◽  
Xurun Yu ◽  
Yong Zhang ◽  
Yunfei Wu ◽  
Fei Xiong

Abstract Background: Spikelets at different spike positions and the caryopsis at different grain positions grow and develop differently. The caryopsis development and physicochemical properties of starch at different grain positions (the first, second, and third grain positions: G1, G2, and G3) of wheat spikelets were investigated in this study. Results: During the development process, the thickness of both dorsal and abdomen pericarp 8 days after anthesis (DAA) followed the sequence G2 < G1 < G3. However, at 14 DAA the thickness followed the dorsal sequence of G1 < G2 < G3 and the abdomen sequence of G2 < G1 < G3. At 20 and 30 DAA, no difference existed in the pericarp thickness of each grain. The accumulation quantities before 20 DAA varied with starch and protein of endosperm cell in the order G1 > G2 > G3. In mature caryopsis, the caryopsis size and weight indicate that G1 = G2 > G3. The starch content followed the order G1 > G2 > G3, while the essential amino acid, the total amino acid, and the protein content followed the order G2 > G1 > G3. The apparent amylose content followed the sequence G3 > G2 > G1, and A-type starch content followed G3 > G1 > G2. The amorphous ratio followed the order G2 > G1 > G3, whereas the double-helix ratio and the relative crystallinity exhibited the opposite trend. The order of the final degree of hydrolysis through AAG, PPA, and HCL was G2 > G1 > G3. Conclusions: The different material contents were possibly due to the short development time of caryopsis, and the difference in starch physicochemical properties between G2 and the other grain positions might be related to the components and structural characteristics of starch.


Polymers ◽  
2021 ◽  
Vol 13 (21) ◽  
pp. 3855
Author(s):  
Basheer Aaliya ◽  
Kappat Valiyapeediyekkal Sunooj ◽  
Chillapalli Babu Sri Rajkumar ◽  
Muhammed Navaf ◽  
Plachikkattu Parambil Akhila ◽  
...  

Talipot starch, a non-conventional starch source with a high yield (76%) from the stem pith of talipot palm (Corypha umbraculifera L.) was subjected to three different thermal treatments (dry-heat, heat-moisture and autoclave treatments) prior to phosphorylation. Upon dual modification of starch with thermal treatments and phosphorylation, the phosphorous content and degree of crosslinking significantly increased (p ≤ 0.05) and was confirmed by the increased peak intensity of P=O and P–O–C stretching vibrations compared to phosphorylated talipot starch in the FT-IR spectrum. The highest degree of crosslinking (0.00418) was observed in the autoclave pretreated phosphorylated talipot starch sample. Thermal pretreatment remarkably changed the granule morphology by creating fissures and grooves. The amylose content and relative crystallinity of all phosphorylated talipot starches significantly decreased (p ≤ 0.05) due to crosslinking by the formation of phosphodiester bonds, reducing the swelling power of dual-modified starches. Among all modified starches, dry-heat pretreated phosphorylated starch gel showed an improved light transmittance value of 28.4%, indicating reduced retrogradation tendency. Pasting and rheological properties represented that the thermal pretreated phosphorylated starch formed stronger gels that improved thermal and shear resistance. Autoclave treatment before phosphorylation of talipot starch showed the highest resistant starch content of 48.08%.


2020 ◽  
Vol 44 ◽  
Author(s):  
Antonio Augusto Marques Rodrigues ◽  
Luana Ferreira dos Santos ◽  
Rayssa Ribeiro da Costa ◽  
Débora Tamara Félix ◽  
José Henrique Bernardino Nascimento ◽  
...  

ABSTRACT Yam, cassava, jackfruit seed and mango seed kernel have potential for the extraction and use as starch in the food industry of starch or for the formulation of biodegradable coatings. As a biodegradable coating, starch can be applied in fruits characterized by a fast maturation, such as mango, which requires technologies to increase its shelf life. The aim of this study was to characterize starch from four non-traditional sources and to evaluate their potential as coating for ‘Palmer’ mango fruit. Starches used were extracted from cassava, mango seed kernel, jackfruit seed, and yam, and had their physical, optical, and chemical properties characterized for later use as coatings of ‘Palmer’ mango fruit. Fruits were coated with 3% cassava starch, 3.5% jackfruit seed starch, 3.5% mango seed kernel starch and 3.5% yam starch, and were compared to the control (uncoated). They were then stored at 24.4 ± 0.3 °C and 87 ± 2% RH and evaluated for 12 days. A 5x7 factorial arrangement in a completely randomized experimental design was adopted. Total starch content was higher than 70% in the four sources of starch. Starches from jackfruit and yam had higher amylose content. The four sources of starch had low water solubility and swelling power, with jackfruit seed starch having the highest values. The coating sources were effective in maintaining quality, particularly mango seed kernel starch because it reduced respiratory rate and weight loss in 27.7% and 33.8%, respectively, as well as jackfruit seed starch as it delayed fruit skin yellowing.


2021 ◽  
Author(s):  
Ishita Chakraborty ◽  
Indira Govindaraju ◽  
Sintu Rongpipi ◽  
Krishna Kishore Mahato ◽  
Nirmal Mazumder

AbstractStarchy food items such as rice and potato with high carbohydrate content raise blood sugar. Hence, consuming low glycaemic foods is one tool to keep diabetes under control. In this study, potato and brown rice (Njavara rice) starches were subjected to hydrothermal treatments: heat moisture treatment (HMT) and annealing (ANN) to develop starch-based food products fit for consumption by diabetic patients. The effects of hydrothermal treatments on physicochemical properties and in-vitro enzymatic digestion of starch were determined. It was observed that hydrothermal treatments decreased the swelling power (SP)% and increased the water solubility (WS)% of the native starches. Native potato starch (PSN) showed a high SP of 80.33%, while annealed potato starch (PANN) and heat moisture treated potato starch (PHMT) showed SP reduced to 65.33% and 51.66%, respectively. Similarly, the SP % reduced from 64.33% in native brown rice (BRN) to 44.66% in annealed brown rice (BRANN) and 38.33% in heat moisture treated brown rice (BRHMT). WS % increased from 32.86% in PSN to 36.66% in PANN and 40.66% in PHMT. In BRN, the WS % increased from 14.0% to 14.66% in BRANN and 18.33% in BRHMT. Amylose content increased from 13.23% and 14.56% in PSN and BRN to 16.14% in PANN 17.99% in PHMT, 17.33% in BRANN, and 18.98% in BRHMT. The PSN crystallinity index reduced from 33.49 to 30.50% in PANN and 32.60% in PHMT. At 12 h of enzymatic digestion, it was found that the degree of hydrolysis (DoH) of PHMT (31.66%) and PANN (36.82%) reduced when compared to PSN (41.09%). Similarly, BRHMT exhibited the lowest DoH at 12 h compared to BRANN (29.24%) and BRN (35.48%). This study highlights the importance of hydrothermal treatments on starch in developing low glycaemic index commercial starch-based food products.


Foods ◽  
2019 ◽  
Vol 8 (11) ◽  
pp. 551 ◽  
Author(s):  
Wen-Chien Lu ◽  
Yung-Jia Chan ◽  
Fang-Yu Tseng ◽  
Po-Yuan Chiang ◽  
Po-Hsien Li

Djulis (Chenopodium formosanum Koidz.) is an annual fast-growing underutilized pseudo cereal with a high percentage of starch content. In this study, djulis starch was extracted from the flour of dried grains by three different isolation procedures: (1) hydrochloric acid (HCl) isolation procedure (HP); (2) deionized water isolation procedure (WP); and (3) sodium hydroxide (NaOH) isolation procedure (NP), followed by investigation of the physicochemical properties of the isolated djulis starch. The amylose content of HP, WP, and NP was 22.14%, 24.15%, and 22.43%, respectively. For scanning electron microscopy (SEM) morphological observation, djulis starch presented a polygonal shape with granule sizes of 0.56–1.96, 0.74–3.02, and 0.62–2.48 μm, respectively. Djulis starch showed the classification of typical A-type x-ray patterns, and the relative degree of crystallinity for HP, WP, and NP was 33.15%, 36.17%, and 37.42%, respectively. Differential scanning calorimetry (DSC) analysis was used to determine the transition temperatures, transition range, and enthalpies of the gelatinization of starches. HP and WP isolated starch exhibited the highest ΔH 9.24 and 8.51 J/g, respectively, whereas NP starch showed the lowest ΔH of 6.95 J/g. The pasting temperatures of HP, WP, and NP isolated starch, which were analyzed by using a Rapid Visco Analyzer (RVA), were 71.70 °C, 72.80 °C, and 69.53 °C, respectively. The dependence of swelling power for the three isolated starches on temperature was tested at 10 °C with intervals between 60 °C and 90 °C. In short, the NP isolation procedure with a stable reaction is compelling from a technological point of view.


Molecules ◽  
2018 ◽  
Vol 23 (12) ◽  
pp. 3262
Author(s):  
Ziman Hu ◽  
Lei Zhao ◽  
Zhuoyan Hu ◽  
Kai Wang

Starch was isolated from longan seeds of three widely distributed cultivars (Chuliang, Shixia, and Caopu) in China. Comparisons of the multi-level structure of the starch of longan seeds among various cultivars were made, and the relations between these structural and property characteristics are discussed. The isolated starch, accounting for 44.9–49.5% (w/w) in longan seeds, had an oval or an irregular polygonal shape with a smooth surface. Their chain-length distributions (CLDs) varied with longan cultivar; Chuliang showed a larger proportion of longer amylopectin chains with a degree of polymerization (DP) 30~100. This is attributed to the slightly higher relative crystallinity of Chuliang longan seed starch. Apparent differences were also detected in amylose structure. Caopu showed a higher amylose content than Chuliang and Shixia, resulting in its lower gelatinization temperatures and enthalpy change. All longan seed starch had a typical A-type crystal structure with relative crystallinity ranging 28.6–28.9%. For raw starch, Caopu showed the lowest digestion rate, followed by Chuliang; Shixia showed the highest. This is because Caopu had the highest amylose content. Chuliang had a more intact structure than Shixia, as suggested by its higher crystallinity, although they had similar amylose content. After being fully gelatinized, all starch showed a similar digestion process, indicating that the digestibility of gelatinized starch does not differ with starch source or structure.


2018 ◽  
Vol 156 ◽  
pp. 01027 ◽  
Author(s):  
Isti Pudjihastuti ◽  
Noer Handayani ◽  
Siswo Sumardiono

Nowadays, starch modification is carried out in order to change the native properties into the better ones, such as high stability, brightness, and better texture. The objectives of this study are to investigate the effect of pH on carboxyl content, swelling power, and water solubility of starch. This research was divided into two main stages, i.e. starch modification by ozone oxidation and analysis. The physicochemical properties of modified cassava starch were investigated under various reaction pH of 7-10 and the reaction time between 0-240 minutes. Reaction condition at pH 10 provided the higher value of carboxyl content and water solubility, but the lower of swelling power. This increase in solubility indicates that the modified oxidation starch readily dissolves in water, due to its small size granules and high amylose content. The significant changes of both parameters were achieved in the first 120 minutes of ozone reaction times. The graphic pattern of water solubility was in contrast with swelling power.


2020 ◽  
Vol 12 (9) ◽  
pp. 149
Author(s):  
Peng Liu ◽  
Jianjun Cheng ◽  
Ming Li ◽  
Jing Li ◽  
Hongwei Zhu ◽  
...  

In this study, the effects of different extrusion parameters (extrusion temperature: 100, 130, and 160 &deg;C; moisture content: 22%, 26%, and 30%; screw speed: 180 rpm, 270 rpm, and 360 rpm) on physicochemical properties of finger millet were reviewed. High extrusion temperature produced extrudates with high radial expansion index (REI) and starch digestibility and low bulk density (BD). High moisture content and low screw speed increased BD and total starch content (TSC) while decreasing REI and water solubility index (WSI). WSI and starch digestibility first increased and then decreased with increase in extrusion temperature and moisture content, which reached a maximum at 130 &deg;C nd 26%, respectively. However, water absorption index (WAI) was affected by the interactions among various conditions. The extrudates were darker and yellower than native millet. Based on these extrusion conditions, various millet and millet-based products can be produced.


Molecules ◽  
2018 ◽  
Vol 23 (12) ◽  
pp. 3248 ◽  
Author(s):  
Long Zhang ◽  
Tianxiang Liu ◽  
Guanglong Hu ◽  
Ke Guo ◽  
Cunxu Wei

Chestnut is a popular food in many countries and is also an important starch source. In previous studies, physicochemical properties of starches have been compared among different Chinese chestnut varieties growing under different conditions. In this study, nine Chinese chestnut varieties from the same farm were investigated for starch physicochemical properties to exclude the effects of growing conditions. The dry kernels had starch contents from 42.7 to 49.3%. Starches from different varieties had similar morphologies and exhibited round, oval, ellipsoidal, and polygonal shapes with a central hilum and smooth surface. Starch had bimodal size distribution and the volume-weighted mean diameter ranged from 7.2 to 8.2 μm among nine varieties. The starches had apparent amylose contents from 23.8 to 27.3% but exhibited the same C-type crystalline structure and similar relative crystallinity, ordered degree, and lamellar structure. The gelatinization onset, peak, and conclusion temperatures ranged from 60.4 to 63.9 °C, from 64.8 to 68.3 °C, and from 70.5 to 74.5 °C, respectively, among nine starches; and the peak, hot, breakdown, final, and setback viscosities ranged from 5524 to 6505 mPa s, from 3042 to 3616 mPa s, from 2205 to 2954 mPa s, from 4378 to 4942 mPa s, and from 1326 to 1788 mPa s, respectively. The rapidly digestible starch, slowly digestible starch, and resistant starch ranged from 2.6 to 3.7%, from 5.7 to 12.7%, and from 84.4 to 90.7%, respectively, for native starch, and from 79.6 to 89.5%, from 1.3 to 3.8%, and from 7.1 to 17.4%, respectively, for gelatinized starch.


Sign in / Sign up

Export Citation Format

Share Document