scholarly journals Selected Fungal Natural Products with Antimicrobial Properties

Molecules ◽  
2020 ◽  
Vol 25 (4) ◽  
pp. 911 ◽  
Author(s):  
Dorota Jakubczyk ◽  
Francois Dussart

Fungal natural products and their effects have been known to humankind for hundreds of years. For example, toxic ergot alkaloids produced by filamentous fungi growing on rye poisoned thousands of people and livestock throughout the Middle Ages. However, their later medicinal applications, followed by the discovery of the first class of antibiotics, penicillins and other drugs of fungal origin, such as peptidic natural products, terpenoids or polyketides, have altered the historically negative reputation of fungal “toxins”. The development of new antimicrobial drugs is currently a major global challenge, mainly due to antimicrobial resistance phenomena. Therefore, the structures, biosynthesis and antimicrobial activity of selected fungal natural products are described here.

2019 ◽  
Vol 20 (11) ◽  
pp. 2747 ◽  
Author(s):  
Nor Fadhilah Kamaruzzaman ◽  
Li Peng Tan ◽  
Ruhil Hayati Hamdan ◽  
Siew Shean Choong ◽  
Weng Kin Wong ◽  
...  

Antimicrobial resistance is now considered a major global challenge; compromising medical advancements and our ability to treat infectious disease. Increased antimicrobial resistance has resulted in increased morbidity and mortality due to infectious diseases worldwide. The lack of discovery of novel compounds from natural products or new classes of antimicrobials, encouraged us to recycle discontinued antimicrobials that were previously removed from routine use due to their toxicity, e.g., colistin. Since the discovery of new classes of compounds is extremely expensive and has very little success, one strategy to overcome this issue could be the application of synthetic compounds that possess antimicrobial activities. Polymers with innate antimicrobial properties or that have the ability to be conjugated with other antimicrobial compounds create the possibility for replacement of antimicrobials either for the direct application as medicine or implanted on medical devices to control infection. Here, we provide the latest update on research related to antimicrobial polymers in the context of ESKAPE (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter spp.) pathogens. We summarise polymer subgroups: compounds containing natural peptides, halogens, phosphor and sulfo derivatives and phenol and benzoic derivatives, organometalic polymers, metal nanoparticles incorporated into polymeric carriers, dendrimers and polymer-based guanidine. We intend to enhance understanding in the field and promote further work on the development of polymer based antimicrobial compounds.


Antibiotics ◽  
2020 ◽  
Vol 9 (7) ◽  
pp. 406
Author(s):  
John A. Karas ◽  
Labell J. M. Wong ◽  
Olivia K. A. Paulin ◽  
Amna C. Mazeh ◽  
Maytham H. Hussein ◽  
...  

A post-antibiotic world is fast becoming a reality, given the rapid emergence of pathogens that are resistant to current drugs. Therefore, there is an urgent need to discover new classes of potent antimicrobial agents with novel modes of action. Cannabis sativa is an herbaceous plant that has been used for millennia for medicinal and recreational purposes. Its bioactivity is largely due to a class of compounds known as cannabinoids. Recently, these natural products and their analogs have been screened for their antimicrobial properties, in the quest to discover new anti-infective agents. This paper seeks to review the research to date on cannabinoids in this context, including an analysis of structure–activity relationships. It is hoped that it will stimulate further interest in this important issue.


2014 ◽  
Vol 15 (2) ◽  
pp. 175-177
Author(s):  
Gordon W. Brumbaugh

AbstractResistance is a qualitative interpretation of antimicrobial activity in vitro. Critical to management of bovine respiratory disease (BRD) is the clinical response in vivo. Attempts to connect activity in vitro to response in vivo have been complicated by the complexity of BRD, interpretation of antimicrobial activity in vitro, and inconsistent measures of clinical success or failure. During recent history, the discovery, development, and commercialization of antimicrobials have decreased. In response to resistance, voluntary and imposed restrictions on use of antimicrobials have been implemented. Resistance can be reversed using technology and knowledge of mechanisms of resistance. Perhaps approaches that reverse resistance will be used in clinical management of BRD in the future. The short answer to the question posed in the title is, ‘yes.’ Since antimicrobial drugs were discovered, resistance has been a consideration for selection of treatment of any infectious disease and BRD is not unique. In the opinion of the author, the more important question is, ‘How will antimicrobial resistance of BRD pathogens impact BRD management in the future?’


2018 ◽  
Vol 18 (17) ◽  
pp. 1506-1513 ◽  
Author(s):  
Kashmiri Lal ◽  
Lokesh Kumar ◽  
Ashwani Kumar ◽  
Anil Kumar

Background: Oxazolones and 1,2,3-triazoles are among the extensively studied heterocycles in medicinal chemistry. Both of these moieties are reported to possess a broad spectrum of biological activity including antimicrobial. Objective: The objective of the current work is to design, synthesize and antimicrobial evaluation of some new oxazolone-1,2,3-triazole hybrids. Methods: The designed oxazolone-1,2,3-triazole hybrids were synthesized using copper(I)-catalyzed azide-alkyne cycloaddition. The antimicrobial evaluation was carried out using serial dilution method. Results: Most of the synthesized hybrids showed significant antimicrobial properties. Some of the compounds were found to be possessing better or comparable activity to that of the standards used. The docking simulations results are also in agreement with the antimicrobial activity data. Conclusion: Sixteen new hybrids were synthesized and tested in vitro for their antimicrobial activity. Some of the tested compounds exhibited promising antimicrobial activity and could be utilized for the development of the lead compounds for new and more potent antimicrobial drugs.


2019 ◽  
Vol 16 (1) ◽  
pp. 17-37 ◽  
Author(s):  
Jaskirat Kaur ◽  
Divya Utreja ◽  
Ekta ◽  
Nisha Jain ◽  
Shivali Sharma

Background:Heterocyclic compounds containing nitrogen have been known to possess a very important role in the field of medicinal chemistry. Indole and its derivatives displayed a wide range of biological properties such as anti-inflammatory, analgesic, anti-microbial, anti-convulsant, antidepressant, anti-diabetic, antihelmintic and anti-allergic activities etc. The diverse biological activities exhibited by compounds containing indole moiety has provided the impetus to explore its anti-microbial activity in order to save the valuable life of patients. </P><P> Objective: The review focuses on the advances in the synthesis of indole derivatives and antimicrobial properties exhibited by them.Conclusion:A great deal of work has been done in order to synthesize indole derivatives and to evaluate antimicrobial potential, as indicated by the review. The information provided in this article may be helpful for the researchers for the development of efficient antimicrobial drugs.


2021 ◽  
Vol 6 (6-2) ◽  
pp. 37-50
Author(s):  
A. V. Nevezhina ◽  
T. V. Fadeeva

The spread of strains of microorganisms that are multidrug resistant to modern antimicrobial drugs is still an urgent problem in the treatment and prevention of infectious diseases and public health in general.Currently, the possibility of using metal nanopreparations in various fields of medicine is being actively studied. Nanoparticles of metals and metal oxides are promising antimicrobial agents and are attracting growing interest due to their effectiveness. Nanoscale copper metal particles have shown high antimicrobial activity againstvarious types of gram-positive and gram-negative bacteria, as well as fungi. Taking into account the potential of copper nanoparticles in antimicrobial therapy, we present an overview of the current state of research related to their antimicrobial properties, consideration of the mechanisms of action, key factors affecting antimicrobial activity, including the polymer matrix. The issues of toxicity and resistance to copper are considered. The advantage of copper nanoparticles over other metal nanoparticles is shown.The studies summarized in this review have shown the promise of copper nanoparticles in the creation of new antimicrobial drugs that can be used in the future to control, prevent, and treat various diseases.


Author(s):  
Nataliya Demchenko ◽  
Zinaida Suvorova ◽  
Yuliia Fedchenkova ◽  
Tamara Shpychak ◽  
Oleh Shpychak ◽  
...  

The aim of this work is to develop methods of synthesis of 3-arylaminomethyl-1-(2-oxo-2-arylethyl)-6,7,8,9-tetrahydro-5H-[1,2,4]triazolo[4,3-a]azepin-1-ium bromides and aryl-(4-R1-phenyl-5,6,7,8-tetrahydro-2,2a,8a-triazacyclopenta[cd]azulen-1-ylmethyl)-amines and to study their antimicrobial activity against strains of gram-positive and gram-negative bacteria as well as yeast fungi. Materials and methods. 1Н NMR spectra were recorded on Bruker 400 spectrometer operating at frequency of 400 MHz. Antimicrobial activity of the compounds synthesized was evaluated by their minimum inhibitory concentration (MIC) values. Results and discussion. The interaction of 3-arylaminomethyl-6,7,8,9-tetrahydro-5H-[1,2,4]triazolo[4,3-a]azepines with substituted phenacyl bromides produced novel 3-arylaminomethyl-1-(2-oxo-2-arylethyl)-6,7,8,9-tetrahydro-5H-[1,2,4]triazolo[4,3-a]azepin-1-ium bromides. The latter when refluxed in 10 % solution of NaOH gave aryl-(4-R1-phenyl-5,6,7,8-tetrahydro-2,2a,8a-triazacyclopenta[cd]azulen-1-ylmethyl)-amines. The study of antimicrobial activity of the compounds obtained allowed to find derivatives which are active against С. albicans and S. aureus strains. Among the compounds tested 3-[(41-bromophenylamino)-methyl]-1-[2-(4-methoxyphenyl)-2-oxoethyl]-6,7,8,9-tetrahydro-5H-[1,2,4]triazolo[4,3-a]azepin-1-ium bromide 5cd appeared to be more active than the reference drug Cefixime and displayed close antimicrobial activity as the antibiotic Linezolid. Conclusions. It was found out that derivatives of 3-arylaminomethyl-1-(2-oxo-2-arylethyl)-6,7,8,9-tetrahydro-5H-[1,2,4]triazolo[4,3-a]azepin-1-ium bromides display broad spectrum of antimicrobial activity and are able to inhibit growth of both bacteria and fungi. S. aureus and C. albicans turned out to be the most sensitive strains to the compounds tested, MIC was in the range of 6.2-25.0 mg/mL. Gram-negative strains of microorganisms were less sensitive to the compounds evaluated and 5fа was the most active derivative displaying antimicrobial activity at the concentration of 50.0 mg/mL. Antimicrobial activity of triazoloazepinium bromide derivatives was similar to that one of Linezolid and Fluconazole reference drugs and more pronounced than the activity of Cefixime. Hence, the data gathered evidence the feasibility of further study of the antimicrobial properties of the most active compounds in in vivo experiments aiming at assessment of the prospects for the creation of new effective and safe antimicrobial drugs based on them


Molecules ◽  
2020 ◽  
Vol 25 (21) ◽  
pp. 5145 ◽  
Author(s):  
Dmitriy N. Shurpik ◽  
Pavel L. Padnya ◽  
Ivan I. Stoikov ◽  
Peter J. Cragg

Calixarenes and related macrocycles have been shown to have antimicrobial effects since the 1950s. This review highlights the antimicrobial properties of almost 200 calixarenes, resorcinarenes, and pillararenes acting as prodrugs, drug delivery agents, and inhibitors of biofilm formation. A particularly important development in recent years has been the use of macrocycles with substituents terminating in sugars as biofilm inhibitors through their interactions with lectins. Although many examples exist where calixarenes encapsulate, or incorporate, antimicrobial drugs, one of the main factors to emerge is the ability of functionalized macrocycles to engage in multivalent interactions with proteins, and thus inhibit cellular aggregation.


Processes ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 609
Author(s):  
Wye-Hong Leong ◽  
Kok-Song Lai ◽  
Swee-Hua Erin Lim

Antimicrobial resistance (AMR) has been identified as one of the biggest health threats in the world. Current therapeutic options for common infections are markedly limited due to the emergence of multidrug resistant pathogens in the community and the hospitals. The role of different essential oils (EOs) and their derivatives in exhibiting antimicrobial properties has been widely elucidated with their respective mechanisms of action. Recently, there has been a heightened emphasis on lavender essential oil (LEO)’s antimicrobial properties and wound healing effects. However, to date, there has been no review published examining the antimicrobial benefits of lavender essential oil, specifically. Previous literature has shown that LEO and its constituents act synergistically with different antimicrobial agents to potentiate the antimicrobial activity. For the past decade, encapsulation of EOs with nanoparticles has been widely practiced due to increased antimicrobial effects and greater bioavailability as compared to non-encapsulated oils. Therefore, this review intends to provide an insight into the different aspects of antimicrobial activity exhibited by LEO and its constituents, discuss the synergistic effects displayed by combinatory therapy involving LEO, as well as to explore the significance of nano-encapsulation in boosting the antimicrobial effects of LEO; it is aimed that from the integration of these knowledge areas, combating AMR will be more than just a possibility.


Planta Medica ◽  
2012 ◽  
Vol 78 (11) ◽  
Author(s):  
T Thorskov Bladt ◽  
S Kildgaard ◽  
P Boldsen Knudsen ◽  
C Held Gotfredsen ◽  
C Dürr ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document