scholarly journals Antifungal Properties of Essential Oils and Their Compounds for Application in Skin Fungal Infections: Conventional and Nonconventional Approaches

Molecules ◽  
2021 ◽  
Vol 26 (4) ◽  
pp. 1093
Author(s):  
Aswir Abd Rashed ◽  
Devi-Nair Gunasegavan Rathi ◽  
Nor Atikah Husna Ahmad Nasir ◽  
Ahmad Zuhairi Abd Rahman

Essential oils (EOs) are known to have varying degrees of antimicrobial properties that are mainly due to the presence of bioactive compounds. These include antiviral, nematicidal, antifungal, insecticidal and antioxidant properties. This review highlights the potential of EOs and their compounds for application as antifungal agents for the treatment of skin diseases via conventional and nonconventional approaches. A search was conducted using three databases (Scopus, Web of Science, Google Scholar), and all relevant articles from the period of 2010–2020 that are freely available in English were extracted. In our findings, EOs with a high percentage of monoterpenes showed strong ability as potential antifungal agents. Lavandula sp., Salvia sp., Thymus sp., Citrus sp., and Cymbopogon sp. were among the various species found to show excellent antifungal properties against various skin diseases. Some researchers developed advanced formulations such as gel, semi-solid, and ointment bases to further evaluate the effectiveness of EOs as antifungal agents. To date, most studies on the application of EOs as antifungal agents were performed using in vitro techniques, and only a limited number pursued in vivo and intervention-based research.

2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Hanae Naceiri Mrabti ◽  
Latifa Doudach ◽  
Naoual El Menyiy ◽  
Mohammed Bourhia ◽  
Ahmad Mohammad Salamatullah ◽  
...  

Thymus broussonetii Boiss (T. broussonetii) is a rare medicinal and aromatic plant. It is widely used in traditional medicine to treat several diseases, including diarrhea, fever, cough, irritation, skin diseases, rheumatism, respiratory ailments, influenza, and digestion problems. In this review, we have critically summarized previous data on T. broussonetii about its phytochemistry, botanical and geographical distribution, toxicological investigation, and pharmacological properties. Using scientific research databases such as Wiley Online, SciFinder, ScienceDirect, PubMed, SpringerLink, Web of Science, Scopus Wiley Online, and Google Scholar, the data on T. broussonetii were collected and discussed. The presented data regrouped bioactive compounds and biological activities of T. broussonetii. The findings of this work showed that essential oils and extracts of T. broussonetii exhibited numerous pharmacological activities (in vitro and in vivo), particularly antibacterial, antifungal, antioxidant, anticancer, anti-inflammatory, insecticidal, antipyretic, antinociceptive, and immunological and behavioral effects. While toxicological studies of T. broussonetii essential oils and extracts are lacking, modern scientific tools revealed the presence of different classes of secondary metabolites such as terpenoids, alkaloids, flavonoids, tannins, coumarins, quinones, carotenoids, and steroids. T. broussonetii essential oils, especially from the aerial parts, exhibited potent antibacterial, antifungal, and antioxidant effects. An in-depth toxicological investigation is needed to validate the efficacy and safety of T. broussonetii extracts and essential oils and their secondary metabolites. However, further pharmacokinetic and pharmacodynamic studies should be performed to validate its bioavailability.


2019 ◽  
Vol 25 (21) ◽  
pp. 2323-2337 ◽  
Author(s):  
Elisabetta Esposito ◽  
Claudio Nastruzzi ◽  
Maddalena Sguizzato ◽  
Rita Cortesi

The skin and mucous membranes are subjected to many disorders and pathological conditions. Nature offers a wide range of molecules with antioxidant activity able to neutralize, at least in part, the formation of free radicals and therefore to counteract the phenomena of cellular aging. Since synthetic drugs for the treatment of skin diseases can induce resistance, it is particularly interesting to use compounds of plant origin, transporting them in pharmaceutical forms capable of controlling their release and absorption. This review provides an overview of new findings about the use of lipid-based nanosystems for the delivery of natural molecules useful on the topical treatment of skin disorders. Several natural molecules encapsulated in lipid nanosystems have been considered in the treatment of some skin pathologies or diseases. Particularly, the use of rosemary and eucalyptus essential oil, saffron derivatives, curcumin, eugenol, capsaicin, thymol and lycopene has been reported. The molecules have been alternatively encapsulated in viscous systems, such as the organogels, or in liquid systems, such as ethosomes, transferosomes, solid lipid nanoparticles and monoolein based dispersions thickened by inclusion in carbomer gels. The nanostructured forms have been in vitro and in vivo investigated for the treatment of skin disorders due to dehydration, inflammation, melanoma, wound healing, fungal infections or psoriasis. The data reported in the different studies have suggested that the cutaneous application of lipid nanosystems allows a deep interaction between lipid matrix and skin strata, promoting a prolonged release and efficacy of the loaded natural molecules. This review suggests that the application of natural molecules onto the skin by lipid-based nanosystems can provide numerous clinician benefits in dermatology and cosmetics.


Author(s):  
Rasha Saad Suliman ◽  
Heyam Saad Ali ◽  
Abd Araheem Husayn ◽  
Babiker M. A. Elhaj ◽  
Rania Suliman

Superficial fungal infections represented 17% of skin diseases in patients attending the outpatient clinic of Khartoum Hospital of Skin and Venereal Diseases. The treatment of these infections usually involves the use of systemic drugs and/or topical well-tried preparations. All of the drugs carry a potential of adverse reactions, besides their relatively high cost.  Honey, which is a natural product of the honeybee, is believed to be active against fungi.  In this study, honey was used as topical treatment for six different clinical syndromes of superficial fungal infections. The study, which was carried out at the outpatient clinic of Khartoum Hospital of Skin and Venereal Diseases, included 360 patients (210 males and 150 females) with skin, hair and nail infections. Patients, diagnosed by clinical examination and direct microscopy (KOH), were given honey to be applied on their lesions twice daily.  Follow-up was made weekly by both clinical and laboratory evaluations.  A complementary follow-up visit after 4 weeks of completion of treatment was needed in order to trace any clinical or mycological changes.  Clinical and mycological cure showed some difference.  Two hundred and sixty patients (72.4%) showed clinical cure associated with hyphal clearance on direct microscopy.  Spores were not affected by honey, a direct cause of high relapse rate (42.3%).  It is concluded that honey had a therapeutic effect on skin and scalp fungal infections but nail infection were not affected.


Author(s):  
Mehdi Mirzaii ◽  
Marzieh Yaeghoobi ◽  
Meysam Afzali ◽  
Neginsadat Amirkhalili ◽  
Majid Mahmoodi ◽  
...  

Background and Objectives: Candidiasis and pityriasis versicolor are opportunistic fungal infections that are caused by Candida spp. and Malassezia spp. yeasts. Conventional drugs like azole and amino derivatives are known to treat fungal skin diseases. However, drawbacks like long-term side effects and drug resistance lead to investigate on antifungal properties of phytochemicals as an alternative to available synthetic drugs. Materials and Methods: The herbal nano hydrogel was successfully synthesized from Quince Seed extract followed by ultrasonic treatment and it has been formulated using a mixture of essential oils. We evaluated the antifungal in vitro assay for a mixture of essential oils in combination with herbal nano hydrogel against Candida albicans and Malasezia furfur strains by micro dilution method. Results: The results indicated that essential oils possess antifungal activity with the MIC value of 12.5 and 6.24 mg/ml against C. albicans and M. furfur, respectively. No fungicidal effect was reported for the herbal hydrogel before nanofabrication while it shown some antifungal activity after ultrasonic treatment for 5 and 10 minutes. As anticipated; the antifungal property of essential oil mixture was appreciably improved when it combined with herbal nano hydrogel where the highest level of inhibition was observed at concentration of 3.125 mg/ml for both strains. The loss in biological activity observed when the ultrasonic treatment on herbal nano hydrogel performed for longer time. Conclusion: The proposed plant-based nano formulation shown promising in vitro antifungal activities against C. albicans and M. furfur strains and its antifungal properties were comparable with commercially available agents like clotrimazole. The new formulation expected to be safe with minimum long-term side effects. Further investigations are underway to confirm the safety and the mechanism of the action of this new herbal formulation.


2016 ◽  
Vol 68 (4) ◽  
pp. 991-999 ◽  
Author(s):  
S.B. Waller ◽  
I.M. Madrid ◽  
M.B. Cleff ◽  
R. Santin ◽  
R.A. Freitag ◽  
...  

ABSTRACT Rosmarinus officinalis L. (rosemary) and Origanum vulgare L. (oregano) are known to have antimicrobial properties, but studies on sporotrichosis are scarce. This study aimed to evaluate the anti-Sporothrix spp. activity of essential oils from commercial products and oils extracted from aerial parts of these plants and analyze their chemical constituents. S. schenckii complex and S. brasiliensis (n: 25) isolated from humans, cats, dogs, and environmental soil were tested through M27-A3 guidelines of CLSI with modification for phytotherapics. The essential oils of R. officinalis L. were similar for MIC50 and MFC50 ≤2.25mg/mL for extracted oil; and 4.5mg/mL and 9mg/mL, respectively, for commercial oil. Both products showed MIC90 of 18mg/mL and MFC90 of 36mg/mL. In O. vulgare L., the extracted oil had better activity with MIC50 and MFC50 ≤2.25mg/mL, and MIC90 and MFC90 of 4.5mg/mL, whereas the commercial oil showed MIC50 and MFC50 of 9mg/mL and MIC90 18mg/mL, respectively, and MFC90 of 36mg/mL. Through gas chromatography (CG/FID), thymol and α-terpinene were majority for extracted oil of O. vulgare L., and carvacrol and γ-terpinene made up the majority of the commercial oil. Both essential oils of R. officinalis L. showed 1,8-cineole and α-pinene as major. The fungal isolates were susceptible to all tested essential oils, including in itraconazole-resistant S. brasiliensis isolates. The extracted and commercial oils of the plants presented in vitro anti-Sporothrix spp. activity, and they are promising for treatment of sporotrichosis, including in cases refractory to itraconazole. More studies should be performed about toxicity and in vivo efficacy for its safe use.


2007 ◽  
Vol 2007 ◽  
pp. 200-200
Author(s):  
T. Steiner ◽  
C. Lückstädt

Intensive research has been directed to the potential of Natural Growth Promoters (NGPs) to replace antibiotics. Phytogenics and organic acids (OA) have been shown to be effective in reducing the incidence of gastrointestinal disorders, thereby improving growth performance in pigs (Steiner, 2006). The addition of OA to nonruminant diets is supposed to have beneficial effects on feed safety since OA have a detrimental impact on moulds and other feed contaminants. Moreover, due to a decrease in gastric pH, acidification of the diets creates favourable conditions for nutrient digestibility, especially in young piglets (Radcliffe et al., 1998). Dietary supplementation with essential oils originating from aromatic plants may directly affect the intestinal microflora, both in quantitative and qualitative terms. As shown under in vitro (Helander et al., 1998) and in vivo conditions (Kroismayr et al., 2005), oregano essential oils have strong antimicrobial properties. Finally, it has been confirmed that addition of fructooligosaccharides (FOS) to diets for nonruminants may stabilize the gut microflora by selectively supporting the growth of beneficial bacteria (Macfarlane et al., 2006). Depending on individual farm conditions, a well-adjusted combination of different strategies is supposed to maximize the efficacy of NGPs in antibiotic-free feeding systems. The aim of the trial was to investigate the effects of phytogenics and OA alone and in combination in comparison with a commercial diet containing no additives.


2020 ◽  
Vol 35 (1) ◽  
pp. 49-56
Author(s):  
Brankica Tanovic ◽  
Jovana Hrustic ◽  
Milica Mihajlovic ◽  
Mila Grahovac ◽  
Marija Stevanovic ◽  
...  

Essential oils have been well-known for their antimicrobial properties for a very long time. Some of them have been effectively used in human medicine for decades. Our earlier investigation revealed a great potential of thyme and oregano essential oils as crop protectants against some postharvest fruit pathogens. The effects of formulated thyme and oregano essential oils on Monilinia laxa and Monilinia fructicola were studied in vitro and in vivo. In vitro antagonistic assays were performed on solidified PDA medium using a slightly modified agar overlay technique, while in vivo experiments were conducted on inoculated apple fruits. In vitro essays showed that the developed formulations (emulsifiable concentrates - EC) significantly inhibited the mycelial growth of Monilinia spp. Experiments in vivo, performed on inoculated apple fruits, revealed that the developed formulations provided a significant level of Monilinia spp. suppression. To our knowledge, another EC formulation of oregano essential oil intended for use in Monilinia spp. control has never been developed before. The presented results are initial findings and evaluation of the activity of the developed products should therefore proceed under field conditions to determine their efficacy and activity spectrum, and to estimate economic aspects of their use.


2021 ◽  
Author(s):  
Julien Gyamfi Agyemang ◽  
Cletus Adiyaga Wezena ◽  
Rahmat Alela-EMOMA Saaka ◽  
Abraham Babatuiamu Titigah ◽  
Samuel Sunyazi Sunwiale ◽  
...  

Background Skin diseases, particularly Tinea pedis are very rare in Ghana leading to low investment in dermatological services in the country and the African continent. Globally, Tinea pedis affects about 15% of the global population. Importantly, it is a major public health problem and socioeconomic issue. Currently, the most recommended treatment for Tinea pedis infection are polyenes, azoles, allylamines, and fluorocytosines. Although these drugs are effective, they do have adverse side effects and are limited in the clinical settings in developing countries especially Ghana. Method: Research papers were collected from Pubmed, Google scholar, chemical abstracts, and journal websites, reporting both in vitro and in vivo information on Tinea pedis. General information on Tinea pedis, the methods of infection, transfer, treatment options, and resistance were obtained after screening the articles. Many agents are involved in cases of Tinea pedis but are predominantly caused by Trichophyton rubrum which feeds on the keratinous layer of the topmost skin of the foot causing skin discoloration, itching, and maceration. The disease is influenced by individual lifestyle, environmental conditions, and individual factors such as age, sex, and host immunity and is prevented by the maintenance of good personal hygiene.Tinea pedis like other tinea infections are treated with both topical and systemic agents. The classes of medications used in the treatment of Tinea pedis are polyenes, azoles, allylamines, and fluorocytosines. Tinea pedis antifungal resistance development could be partly associated with incomplete medication and misuse of antifungal medications. Additionally, patients with serious underlying health conditions such as compromised immune systems like HIV/AIDS, diabetes, radiotherapy for cancer, and transplantation could complicate resistance. Conclusion: Although, fungal diseases do not cause epidemics the increasing rate of fungal infections and therefore Tinea pedis has to be checked and prevented. High budgets are made in the development of medications which mostly lose their effectiveness over time due to resistance development. Good personal hygiene is very effective but the available medications must be used appropriately for effective treatment and resistance avoidance. Infection prevention and control, tracking and data sharing, good and easily accessible antifungals, vaccines, and maintenance of personal and environmental hygiene are the topmost preventive measures against resistance development.


2018 ◽  
Vol 30 (1) ◽  
pp. 3-13 ◽  
Author(s):  
Dominika Andrys ◽  
Danuta Kulpa ◽  
Monika Grzeszczuk ◽  
Bożena Białecka

Abstract The aim of the study was to determine the influence of jasmonic acid added to culture medium on the growth of plants and antioxidant properties of dry plant material, as well as on the antimicrobial properties of essential oils produced by the narrow-leaved lavender. For plant propagation, MS media supplemented with JA at concentrations of 0.2-1.5 mg dm−3 were used. The use of the lower JA concentrations did not influenced the growth parameters measured, whereas at the higher concentrations (1 and 1.5 mg dm−3) JA caused growth inhibition and a decrease in plant weight. With increasing JA concentration, the number of secretory trichomes decreased. Addition of 0.5 mg dm−3 JA caused an increase in secretory trichome diameter on both the adaxial and abaxial surface of leaves (83.3 and 73.2 μm, respectively). The antioxidant activity of the lavender plants propagated on media with the addition of JA (regardless of the concentration used) was higher than that of the control plants. The plants from JA-supplemented media were used to isolate essential oils, the antimicrobial activity of which was tested using the disc diffusion method at the concentrations of 10 and 50%. All the oils tested exhibited activity towards Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus, Staphylococcus epidermidis and Candida albicans. The essential oils isolated from the plants propagated on the medium with 1 mg dm−3 JA were characterized by the highest antimicrobial activity against the majority of the tested microorganisms.


2008 ◽  
Vol 19 (4) ◽  
pp. 297-305 ◽  
Author(s):  
Andrea V Page ◽  
W Conrad Liles

Posaconazole is the newest antifungal agent to be approved for use in Canada. With excellent in vitro activity against a broad spectrum of yeasts and filamentous fungi, as well as having a well-tolerated oral formulation, posaconazole offers many potential advantages. Of particular interest are its seemingly lower potential for cross-resistance with other azoles and its activity (unique among oral antifungal agents) against the zygomycetes. As the incidence of both common and uncommon fungal infections increases commensurate with the growing population of immunocompromised individuals, posaconazole may ultimately become an important therapeutic option. The present article reviews the in vitro and in vivo data describing its activity, and focuses on both the proven and the potential clinical applications of this new triazole agent.


Sign in / Sign up

Export Citation Format

Share Document