scholarly journals Preliminary Investigation of the Antioxidant, Anti-Diabetic, and Anti-Inflammatory Activity of Enteromorpha intestinalis Extracts

Molecules ◽  
2021 ◽  
Vol 26 (4) ◽  
pp. 1171
Author(s):  
Biswajita Pradhan ◽  
Srimanta Patra ◽  
Chhandashree Behera ◽  
Rabindra Nayak ◽  
Bimal Prasad Jit ◽  
...  

Marine algae are a promising source of potent bioactive agents against oxidative stress, diabetes, and inflammation. However, the possible therapeutic effects of many algal metabolites have not been exploited yet. In this regard, we explored the therapeutic potential of Enteromorpha intestinalis extracts obtained from methanol, ethanol, and hexane, in contrasting oxidative stress. The total phenolic (TPC) and flavonoids (TFC) content were quantified in all extracts, with ethanol yielding the best values (about 60 and 625 mg of gallic acid and rutin equivalents per gram of extract, respectively). Their antioxidant potential was also assessed through DPPH•, hydroxyl radical, hydrogen peroxide, and superoxide anion scavenging assays, showing a concentration-dependent activity which was greater in the extracts from protic and more polar solvents. The α-amylase and α-glucosidase activities were estimated for checking the antidiabetic capacity, with IC50 values of about 3.8 µg/mL for the methanolic extract, almost as low as those obtained with acarbose (about 2.8 and 3.3 µg/mL, respectively). The same extract also showed remarkable anti-inflammatory effect, as determined by hemolysis, protein denaturation, proteinase and lipoxygenase activity assays, with respectable IC50 values (about 11, 4, 6, and 5 µg/mL, respectively), also in comparison to commercially used drugs, such as acetylsalicylic acid.

Antioxidants ◽  
2020 ◽  
Vol 9 (9) ◽  
pp. 830
Author(s):  
Pablo Berríos-Cárcamo ◽  
Mauricio Quezada ◽  
María Elena Quintanilla ◽  
Paola Morales ◽  
Marcelo Ezquer ◽  
...  

Drug abuse is a major global health and economic problem. However, there are no pharmacological treatments to effectively reduce the compulsive use of most drugs of abuse. Despite exerting different mechanisms of action, all drugs of abuse promote the activation of the brain reward system, with lasting neurobiological consequences that potentiate subsequent consumption. Recent evidence shows that the brain displays marked oxidative stress and neuroinflammation following chronic drug consumption. Brain oxidative stress and neuroinflammation disrupt glutamate homeostasis by impairing synaptic and extra-synaptic glutamate transport, reducing GLT-1, and system Xc− activities respectively, which increases glutamatergic neurotransmission. This effect consolidates the relapse-promoting effect of drug-related cues, thus sustaining drug craving and subsequent drug consumption. Recently, promising results as experimental treatments to reduce drug consumption and relapse have been shown by (i) antioxidant and anti-inflammatory synthetic molecules whose effects reach the brain; (ii) natural biomolecules secreted by mesenchymal stem cells that excel in antioxidant and anti-inflammatory properties, delivered via non-invasive intranasal administration to animal models of drug abuse and (iii) potent anti-inflammatory microRNAs and anti-miRNAs which target the microglia and reduce neuroinflammation and drug craving. In this review, we address the neurobiological consequences of brain oxidative stress and neuroinflammation that follow the chronic consumption of most drugs of abuse, and the current and potential therapeutic effects of antioxidants and anti-inflammatory agents and biomolecules to reduce these drug-induced alterations and to prevent relapse.


2020 ◽  
Vol 16 (7) ◽  
pp. 1083-1102
Author(s):  
Mohamed A. Shreadah ◽  
Nehad M.A. El Moneam ◽  
Samy A. El-Assar ◽  
Asmaa Nabil-Adam

Background: Aspergillus Versicolor is a marine-derived fungus isolated from Hyrtios Erectus Red Sea sponge. Methods: The aim of this study was to carry out a pharmacological screening and investigation for the in vitro biological activity (antioxidant, cholinergic, antidiabetic and anticancer) of Aspergillus Versicolor crude extract’s active compounds by using different qualitative and quantitative methods. Results: The present study results showed that Aspergillus Versicolor crude extracts contain 0.6 mg total phenolic/mg crude extract. Aspergillus Versicolor also showed a potent antioxidative capacity by decreasing the oxidation of ABTS. The anticancer and inhibitory effects of Aspergillus Versicolor crude extracts on PTK and SHKI were found to be 75.29 % and 80.76%; respectively. The AChE inhibitory assay revealed that Aspergillus Versicolor extracts had an inhibitory percentage of 86.67%. Furthermore, the anti-inflammatory activity using COX1, COX2, TNF, and IL6 was 77.32, 85.21 %, 59.83%, and 56.15%; respectively. Additionally, the anti-viral effect using reverse transcriptase enzyme showed high antiviral activity with 92.10 %. Conclusion: The current study confirmed that the Aspergillus versicolor crude extract and its active constituents showed strong effects on diminishing the oxidative stress, neurodegenerative damage, antiinflammatory, anti-cancer and anti-viral, suggesting their beneficial role as a promising fermented product in the treatment of cancer, oxidative stress, Alzheimer's, anti-inflammatory and anti-viral diseases.


Biomedicines ◽  
2020 ◽  
Vol 8 (9) ◽  
pp. 361
Author(s):  
Margaux Sambon ◽  
Anna Gorlova ◽  
Alice Demelenne ◽  
Judit Alhama-Riba ◽  
Bernard Coumans ◽  
...  

Thiamine precursors, the most studied being benfotiamine (BFT), have protective effects in mouse models of neurodegenerative diseases. BFT decreased oxidative stress and inflammation, two major characteristics of neurodegenerative diseases, in a neuroblastoma cell line (Neuro2a) and an immortalized brain microglial cell line (BV2). Here, we tested the potential antioxidant and anti-inflammatory effects of the hitherto unexplored derivative O,S-dibenzoylthiamine (DBT) in these two cell lines. We show that DBT protects Neuro2a cells against paraquat (PQ) toxicity by counteracting oxidative stress at low concentrations and increases the synthesis of reduced glutathione and NADPH in a Nrf2-independent manner. In BV2 cells activated by lipopolysaccharides (LPS), DBT significantly decreased inflammation by suppressing translocation of NF-κB to the nucleus. Our results also demonstrate the superiority of DBT over thiamine and other thiamine precursors, including BFT, in all of the in vitro models. Finally, we show that the chronic administration of DBT arrested motor dysfunction in FUS transgenic mice, a model of amyotrophic lateral sclerosis, and it reduced depressive-like behavior in a mouse model of ultrasound-induced stress in which it normalized oxidative stress marker levels in the brain. Together, our data suggest that DBT may have therapeutic potential for brain pathology associated with oxidative stress and inflammation by novel, coenzyme-independent mechanisms.


Author(s):  
Rohanizah Abdul Rahim ◽  
Putri Ayu Jayusman ◽  
Norliza Muhammad ◽  
Norazlina Mohamed ◽  
Vuanghao Lim ◽  
...  

Oxidative stress and inflammation are two common risk factors of various life-threatening disease pathogenesis. In recent years, medicinal plants that possess antioxidant and anti-inflammatory activities were extensively studied for their potential role in treating and preventing diseases. Spilanthes acmella (S. acmella), which has been traditionally used to treat toothache in Malaysia, contains various active metabolites responsible for its anti-inflammatory, antiseptic, and anesthetic bioactivities. These bioactivities were attributed to bioactive compounds, such as phenolic, flavonoids, and alkamides. The review focused on the summarization of in vitro and in vivo experimental reports on the antioxidant and anti-inflammatory actions of S. acmella, as well as how they contributed to potential health benefits in lowering the risk of diseases that were related to oxidative stress. The molecular mechanism of S. acmella in reducing oxidative stress and inflammatory targets, such as inducible nitric oxide synthase (iNOS), transcription factors of the nuclear factor-κB family (NF-κB), cyclooxygenase-2 (COX-2), and mitogen-activated protein kinase (MAPK) signaling pathways were discussed. Besides, the antioxidant potential of S. acmella was measured by total phenolic content (TPC), total flavonid content (TFC), 2,2-diphenyl-1-picrylhydrazyl (DPPH), and superoxide anion radical scavenging (SOD) and thiobarbituric acid reactive substance (TBARS) assays. This review revealed that S. acmella might have a potential role as a reservoir of bioactive agents contributing to the observed antioxidant, anti-inflammatory, and health beneficial effects.


Circulation ◽  
2015 ◽  
Vol 132 (suppl_3) ◽  
Author(s):  
Linda Cambier ◽  
Geoffrey de Couto ◽  
Ahmed Ibrahim ◽  
Eduardo Marbán

Background: Exosomes secreted by cardiosphere-derived cells (CDCs) are critical agents of regeneration and cardioprotection following ischemic injury, mediating the beneficial therapeutic effects of CDCs. Transfer of exosomal RNA to target cells is important for bioactivity. Objective: We sought to determine the RNA content of CDCs-secreted exosomes (CDC-exo), and to assess the contributions of selected small non-coding RNAs to the therapeutic efficacy of CDC-exo. Methods: Using next-generation sequencing (Illumina), we characterized the RNA content of CDC-exo. By direct transfection of fluorescently-labelled oligoribonucleotides, we delivered and tracked selected RNA fragments that are highly enriched in CDC-exo. In order to examine potential cytoprotective effects, neonatal rat ventricular myocytes (NRVMs) were pretreated with each of these fragments or a scrambled control fragment prior to H2O2-induced oxidative stress. Effects on gene expression were assessed by transfection of the fragments into bone marrow-derived macrophages. Results: Several noncoding RNA species were present in CDC-exo. Among these, Y RNAs (either whole or in fragments of the 5’ end) constituted 18% of all hits. From this data set, we selected two highly-enriched Y RNA fragments. Both fragments localized to the cytoplasm of CDC, NRVM and macrophages, and conferred augmented resistance to oxidative stress of NRVM (64.25±31.13% viability vs. 44±26.85%; p=0.06). Additionally, macrophages transfected with Y fragments exhibit rapid, robust polarization to a distinctive gene expression profile notable for upregulation of IL-10 (83.07 vs. 0.59 fold; p<0.0001), an anti-inflammatory cytokine. Conclusions: Here, we demonstrated that abundant noncoding RNA components of CDC-exo, Y RNA fragments, are bioactive components of CDC-exo. Two distinct fragments confer cardioprotection and also induce a strong anti-inflammatory response in macrophages. Although several components of the CDC-exo payload (including miRNA) contribute to functional efficacy, the present findings demonstrate the capacity of Y RNA fragments, an RNA species of previously-unknown function, to elicit therapeutic effects in vitro.


2020 ◽  
Vol 21 (22) ◽  
pp. 8870 ◽  
Author(s):  
Jakub Mlost ◽  
Marta Bryk ◽  
Katarzyna Starowicz

Cannabis has a long history of medical use. Although there are many cannabinoids present in cannabis, Δ9tetrahydrocannabinol (Δ9-THC) and cannabidiol (CBD) are the two components found in the highest concentrations. CBD itself does not produce typical behavioral cannabimimetic effects and was thought not to be responsible for psychotropic effects of cannabis. Numerous anecdotal findings testify to the therapeutic effects of CBD, which in some cases were further supported by research findings. However, data regarding CBD’s mechanism of action and therapeutic potential are abundant and omnifarious. Therefore, we review the basic research regarding molecular mechanism of CBD’s action with particular focus on its analgesic potential. Moreover, this article describes the detailed analgesic and anti-inflammatory effects of CBD in various models, including neuropathic pain, inflammatory pain, osteoarthritis and others. The dose and route of the administration-dependent effect of CBD, on the reduction in pain, hyperalgesia or allodynia, as well as the production of pro and anti-inflammatory cytokines, were described depending on the disease model. The clinical applications of CBD-containing drugs are also mentioned. The data presented herein unravel what is known about CBD’s pharmacodynamics and analgesic effects to provide the reader with current state-of-art knowledge regarding CBD’s action and future perspectives for research.


2019 ◽  
Vol 2019 ◽  
pp. 1-17 ◽  
Author(s):  
Stephanie Flore Djuichou Nguemnang ◽  
Eric Gonzal Tsafack ◽  
Marius Mbiantcha ◽  
Ateufack Gilbert ◽  
Albert Donatien Atsamo ◽  
...  

Dissotis thollonii Cogn. (Melastomataceae) is a tropical plant widely used in traditional Cameroonian medicine to relieve and treat many pathologies. It is widespread in the western region where it is used to treat typhoid fever, gastrointestinal disorders, and inflammatory diseases. The purpose of this study is to scientifically demonstrate the anti-inflammatory and antiarthritic properties of the aqueous and ethanolic extracts of the leaves of Dissotis thollonii. The anti-inflammatory properties were evaluated in vitro by inhibition tests for cyclooxygenase, 5-lipoxygenase, protein denaturation, extracellular ROS production, and cell proliferation; while antiarthritic properties were evaluated in vivo in rats using the zymosan A-induced monoarthritis test and the CFA-induced polyarthritis model. This study shows that aqueous and ethanolic extracts at a concentration of 1000 μg/ml inhibit the activity of cyclooxygenase (47.07% and 63.36%) and 5-lipoxygenase (66.79% and 77.7%) and protein denaturation (42.51% and 44.44%). Similarly, both extracts inhibited extracellular ROS production (IC50 = 5.74 μg/ml and 2.96 μg/ml for polymorphonuclear leukocytes, 7.47 μg/ml and 3.28 μg ml for peritoneal macrophages of mouse) and cell proliferation (IC50 = 16.89 μg/ml and 3.29 μg/ml). At a dose of 500 mg/kg, aqueous and ethanolic extracts significantly reduce edema induced by zymosan A (69.30% and 81.80%) and CFA (71.85% and 79.03%). At the same dose, both extracts decreased sensitivity to mechanical hyperalgesia with 69.00% and 70.35% inhibition, respectively. Systemic and histological analyzes show that both extracts maintain the studied parameters very close to normal and greatly restored the normal architecture of the joint in animals. Dissotis thollonii would therefore be a very promising source for the treatment of inflammatory diseases.


Antioxidants ◽  
2020 ◽  
Vol 9 (12) ◽  
pp. 1283
Author(s):  
Phiwayinkosi V. Dludla ◽  
Bongani B. Nkambule ◽  
Sithandiwe E. Mazibuko-Mbeje ◽  
Tawanda M. Nyambuya ◽  
Fabio Marcheggiani ◽  
...  

Impaired adipose tissue function and insulin resistance remain instrumental in promoting hepatic lipid accumulation in conditions of metabolic syndrome. In fact, enhanced lipid accumulation together with oxidative stress and an abnormal inflammatory response underpin the development and severity of non-alcoholic fatty liver disease (NAFLD). There are currently no specific protective drugs against NAFLD, and effective interventions involving regular exercise and healthy diets have proved difficult to achieve and maintain. Alternatively, due to its antioxidant and anti-inflammatory properties, there has been growing interest in understanding the therapeutic effects of N-acetyl cysteine (NAC) against metabolic complications, including NAFLD. Here, reviewed evidence suggests that NAC blocks hepatic lipid accumulation in preclinical models of NAFLD. This is in part through the effective regulation of a fatty acid scavenger molecule (CD36) and transcriptional factors such as sterol regulatory element-binding protein (SREBP)-1c/-2 and peroxisome proliferator-activated receptor gamma (PPARγ). Importantly, NAC appears effective in improving liver function by reducing pro-inflammatory markers such as interleukin (IL)-6 IL-1β, tumour necrosis factor alpha (TNF-α) and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB). This was primarily through the attenuation of lipid peroxidation and enhancements in intracellular response antioxidants, particularly glutathione. Very few clinical studies support the beneficial effects of NAC against NAFLD-related complications, thus well-organized randomized clinical trials are still necessary to confirm its therapeutic potential.


Biomolecules ◽  
2019 ◽  
Vol 9 (11) ◽  
pp. 732 ◽  
Author(s):  
Farida Larit ◽  
Francisco León ◽  
Samira Benyahia ◽  
Stephen Cutler

The aim of this study was to evaluate the total phenolic and flavonoid content, and the in vitro antioxidant, anti-inflammatory, antibacterial, antifungal, antimalarial, cytotoxicity, and antiprotozoal activities of the Algerian plant Cytisus villosus Pourr. (Syn. Cytisus triflorus L’Hérit.). Additionally, the radioligand displacement affinity on opioid and cannabinoid receptors was assessed for the extracts and isolated pure compounds. The hydro alcoholic extract of the aerial part of C. villosus was partitioned with chloroform (CHCl3), ethyl acetate (EtOAc), and n-butanol (n-BuOH). The phenolic content of the C. villosus extracts was evaluated using a modified Folin–Ciocalteau method. The total flavonoid content was measured spectrometrically using the aluminum chloride colorimetric assay. The known flavonoids genistein (1), chrysin (2), chrysin-7-O-β-d-glucopyranoside (3), and 2″-O-α-l-rhamnosylorientin (4) were isolated. The antioxidant activities of the extracts and isolated compounds were evaluated using 2,2-diphenyl-1-picrylhydrazyl (DDPH) and cellular antioxidant activity (CAA) assays. The plant extracts showed moderate antioxidant activity. EtOAc and n-BuOH extracts showed moderate anti-inflammatory activity through the inhibition of induced nitric oxide synthase (iNOS) with IC50 values of 48 and 90 µg/mL, respectively. The isolated pure compounds 1 and 3 showed good inhibition of Inducible nitric oxide synthase (iNOS) with IC50 values of 9 and 20 µg/mL, respectively. Compounds 1 and 2 exhibited lower inhibition of Nuclear Factor kappa-light-chain-enhancer of activated B cells (NF-κB) with IC50 values of 28 and 38 µg/mL, respectively. Furthermore, the extracts and isolated pure compounds have been shown to exhibit low affinity for cannabinoid and opioid receptors. Finally, n-BuOH extract was a potent inhibitor of Trypanosoma brucei with IC50 value of 7.99 µg/mL and IC90 value of 12.61 µg/mL. The extracts and isolated compounds showed no antimicrobial, antimalarial nor antileishmanial activities. No cytotoxic effect was observed on cancer cell lines. The results highlight this species as a promising source of anti-inflammatory and antitrypanosomal agents.


2020 ◽  
Vol 10 (5) ◽  
pp. 1845 ◽  
Author(s):  
Alexandra M. Afonso ◽  
Joana Gonçalves ◽  
Ângelo Luís ◽  
Eugenia Gallardo ◽  
Ana Paula Duarte

Honey and propolis are natural substances produced by Apis mellifera that contain flavonoids, phenolic acids, and several other phytochemicals. The aim of this study was to phytochemically characterize three different types of honey and propolis, both separately and mixed, and to evaluate their wound-healing activity. Total phenolic compounds and flavonoids were determined using the Folin–Ciocalteu’s and aluminum chloride colorimetric methods, respectively. The antioxidant activity was evaluated by both the DPPH free radical scavenging assay and β-carotene bleaching test, and the anti-inflammatory activity was determined by a protein denaturation method. To evaluate the wound-healing activity of the samples, NHDF cells were subjected to a wound scratch assay. The obtained results showed that dark-brown honey presents a higher concentration of phenolic compounds and flavonoids, as well as higher antioxidant and anti-inflammatory activities. Propolis samples had the highest concentrations in bioactive compounds. Examining the microscopic images, it was possible to verify that the samples promote cell migration, demonstrating the wound-healing potential of honey and propolis.


Sign in / Sign up

Export Citation Format

Share Document