scholarly journals About the Dominance of Mesopores in Physisorption in Amorphous Materials

Molecules ◽  
2021 ◽  
Vol 26 (23) ◽  
pp. 7190
Author(s):  
Christoph Strangfeld ◽  
Philipp Wiehle ◽  
Sarah Mandy Munsch

Amorphous, porous materials represent by far the largest proportion of natural and men-made materials. Their pore networks consists of a wide range of pore sizes, including meso- and macropores. Within such a pore network, material moisture plays a crucial role in almost all transport processes. In the hygroscopic range, the pores are partially saturated and liquid water is only located at the pore fringe due to physisorption. Therefore, material parameters such as porosity or median pore diameter are inadequate to predict material moisture and moisture transport. To quantify the spatial distribution of material moisture, Hillerborg’s adsorption theory is used to predict the water layer thickness for different pore geometries. This is done for all pore sizes, including those in the lower nanometre range. Based on this approach, it is shown that the material moisture is almost completely located in mesopores, although the pore network is highly dominated by macropores. Thus, mesopores are mainly responsible for the moisture storage capacity, while macropores determine the moisture transport capacity, of an amorphous material. Finally, an electrical analogical circuit is used as a model to predict the diffusion coefficient based on the pore-size distribution, including physisorption.

2017 ◽  
Vol 57 (2) ◽  
pp. 660
Author(s):  
M. Nadia Testamanti ◽  
Reza Rezaee ◽  
Jie Zou

The evaluation of the gas storage potential of shale reservoirs requires a good understanding of their pore network. Each of the laboratory techniques used for pore characterisation can be applied to a specific range of pore sizes; but if the lithology of the rock is known, usually one suitable method can be selected to investigate its pore system. Shales do not fall under any particular lithological classification and can have a wide range of minerals present, so a combination of at least two methods is typically recommended for a better understanding of their pore network. In the laboratory, the Low-Pressure Nitrogen Gas Adsorption (LP-N2-GA) technique is typically used to examine micropores and mesopores, and Mercury Injection Capillary Pressure (MICP) tests can identify pore throats larger than 3 nm. In contrast, a wider range of pore sizes in rock can be screened with Nuclear Magnetic Resonance (NMR), either in laboratory measurements made on cores or through well logging, provided that the pores are saturated with a fluid. The pore network of a set of shale core samples from the Carynginia Formation was investigated using a combination of laboratory methods. The cores were studied using the NMR, LP-N2-GA and MICP techniques, and the experimental porosity and pore size distribution results are presented. When NMR results were calibrated with MICP or LP-N2-GA measurements, then the pore size distribution of the shale samples studied could be estimated.


Author(s):  
Rami Obeid ◽  
Elias Wehbe ◽  
Mohamad Rima ◽  
Mohammad Kabara ◽  
Romeo Al Bersaoui ◽  
...  

Background: Tobacco mosaic virus (TMV) is the most known virus in the plant mosaic virus family and is able to infect a wide range of crops, in particularly tobacco, causing a production loss. Objectives: Herein, and for the first time in Lebanon, we investigated the presence of TMV infection in crops by analyzing 88 samples of tobacco, tomato, cucumber and pepper collected from different regions in North Lebanon. Methods: Double-antibody sandwich enzyme-linked immunosorbent assay (DAS-ELISA), revealed a potential TMV infection of four tobacco samples out of 88 crops samples collected. However, no tomato, cucumber and pepper samples were infected. The TMV+ tobacco samples were then extensively analyzed by RT-PCR to detect viral RNA using different primers covering all the viral genome. Results and Discussion: PCR results confirmed those of DAS-ELISA showing TMV infection of four tobacco samples collected from three crop fields of North Lebanon. In only one of four TMV+ samples, we were able to amplify almost all the regions of viral genome, suggesting possible mutations in the virus genome or an infection with a new, not yet identified, TMV strain. Conclusion: Our study is the first in Lebanon revealing TMV infection in crop fields, and highlighting the danger that may affect the future of agriculture.


2013 ◽  
Vol 04 (02) ◽  
pp. 1350007 ◽  
Author(s):  
K. S. KAVI KUMAR ◽  
BRINDA VISWANATHAN

While a wide range of factors influence rural–rural and rural–urban migration in developing countries, there is significant interest in analyzing the role of agricultural distress and growing inter-regional differences in fueling such movement. This strand of research acquires importance in the context of climate change adaptation. In the Indian context, this analysis gets further complicated due to the significant presence of temporary migration. This paper analyzes how weather and its variability affects both temporary and permanent migration in India using National Sample Survey data for the year 2007–2008. The paper finds that almost all of the rural–urban migrants are permanent. Only temperature plays a role in permanent migration. In contrast, many temporary migrants are rural–rural and both temperature and rainfall explain temporary migration.


2016 ◽  
Vol 61 (1) ◽  
pp. 9-12
Author(s):  
B. Zhang ◽  
H. Wagner ◽  
M. Büchsenschütz-Göbeler ◽  
Y. Luo ◽  
S. Küchemann ◽  
...  

Abstract For the past two decades, atomic force acoustic microscopy (AFAM), an advanced scanning probe microscopy technique, has played a promising role in materials characterization with a good lateral resolution at micro/nano dimensions. AFAM is based on inducing out-of-plane vibrations in the specimen, which are generated by an ultrasonic transducer. The vibrations are sensed by the AFM cantilever when its tip is in contact with the material under test. From the cantilver’s contactresonance spectra, one determines the real and the imaginary part of the contact stiffness k*, and then from these two quantities the local indentation modulus M' and the local damping factor Qloc-1 can be obtained with a spatial resolution of less than 10 nm. Here, we present measured data of M' and of Qloc-1 for the insulating amorphous material, a-SiO2. The amorphous SiO2 layer was prepared on a crystalline Si wafer by means of thermal oxidation. There is a spatial distribution of the indentation modulus M' and of the internal friction Qloc-1. This is a consequence of the potential energy landscape for amorphous materials.


Biologics ◽  
2021 ◽  
Vol 1 (2) ◽  
pp. 164-176
Author(s):  
Abdallah S. Abdelsattar ◽  
Anan Safwat ◽  
Rana Nofal ◽  
Amera Elsayed ◽  
Salsabil Makky ◽  
...  

Food safety is very important in the food industry as most pathogenic bacteria can cause food-borne diseases and negatively affect public health. In the milk industry, contamination with Salmonella has always been a challenge, but the risks have dramatically increased as almost all bacteria now show resistance to a wide range of commercial antibiotics. This study aimed to isolate a bacteriophage to be used as a bactericidal agent against Salmonella in milk and dairy products. Here, phage ZCSE6 has been isolated from raw milk sample sand molecularly and chemically characterized. At different multiplicities of infection (MOIs) of 0.1, 0.01, and 0.001, the phage–Salmonella interaction was studied for 6 h at 37 °C and 24 h at 8 °C. In addition, ZCSE6 was tested against Salmonella contamination in milk to examine its lytic activity for 3 h at 37 °C. The results showed that ZCSE6 has a small genome size (<48.5 kbp) and belongs to the Siphovirus family. Phage ZCSE6 revealed a high thermal and pH stability at various conditions that mimic milk manufacturing and supply chain conditions. It also demonstrated a significant reduction in Salmonella concentration in media at various MOIs, with higher bacterial eradication at higher MOI. Moreover, it significantly reduced Salmonella growth (MOI 1) in milk, manifesting a 1000-fold decrease in bacteria concentration following 3 h incubation at 37 °C. The results highlighted the strong ability of ZCSE6 to kill Salmonella and control its growth in milk. Thus, ZCSE6 is recommended as a biocontrol agent in milk to limit bacterial growth and increase the milk shelf-life.


2020 ◽  
Vol 1 (1) ◽  
pp. 65-83
Author(s):  
Božidar Forca ◽  
Dragoljub Sekulović ◽  
Igor Vukonjanski

Security is one of the most common terms in the modern world. This statement is supported by the fact that the term security is used in a wide range of areas. The subject of this paper is national security and the challenges, risks and threats to that security in contemporary international relations. The purpose of the work is twofold. First, to show the diversity of theoretical understanding of the term challenge, risk and threat by various authors. On the other hand, the overriding goal is to analyze the relationship to the challenges, risks and threats in different countries. When it comes to national security, challenges, risks and threats, most often, are identified in a document called the national security strategy. This document, as one of the highest in the hierarchy of political acts of every state, when it comes to security, is passed by almost all modern states of the world. The analysis of numerous national security strategies has revealed that it is possible to identify: 1) the challenges, risks and threats that appear in all strategies, 2) the challenges, risks and threats of security that appear in most strategies, and 3) the challenges, risks and threats of security which are country specific.


Author(s):  
Tore Butlin ◽  
Jim Woodhouse

Predictive models of friction-induced vibration have proved elusive despite decades of research. There are many mechanisms that can cause brake squeal; friction coupled systems can be highly sensitive to small perturbations; and the dynamic properties of friction at the contact zone seem to be poorly understood. This paper describes experimental and theoretical work aimed at identifying the key ingredients of a predictive model. A large-scale experiment was carried out to identify squeal initiations using a pin-on-disc test rig: approximately 30,000 squeal initiations were recorded, covering a very wide range of frequencies. The theoretical model allows for completely general linear systems coupled at a single sliding point by friction: squeal is predicted using a linearised stability analysis. Results will be presented that show that almost all observed squeal events can be predicted within this model framework, but that some subsets require innovative friction modelling: predictions are highly dependent on the particular choice of friction model and its associated parameters.


Endocrinology ◽  
2013 ◽  
Vol 154 (5) ◽  
pp. 1832-1844 ◽  
Author(s):  
J. Annelies E. Polman ◽  
E. Ronald de Kloet ◽  
Nicole A. Datson

Abstract In the present study, genomic binding sites of glucocorticoid receptors (GR) were identified in vivo in the rat hippocampus applying chromatin immunoprecipitation followed by next-generation sequencing. We identified 2470 significant GR-binding sites (GBS) and were able to confirm GR binding to a random selection of these GBS covering a wide range of P values. Analysis of the genomic distribution of the significant GBS revealed a high prevalence of intragenic GBS. Gene ontology clusters involved in neuronal plasticity and other essential neuronal processes were overrepresented among the genes harboring a GBS or located in the vicinity of a GBS. Male adrenalectomized rats were challenged with increasing doses of the GR agonist corticosterone (CORT) ranging from 3 to 3000 μg/kg, resulting in clear differences in the GR-binding profile to individual GBS. Two groups of GBS could be distinguished: a low-CORT group that displayed GR binding across the full range of CORT concentrations, and a second high-CORT group that displayed significant GR binding only after administering the highest concentration of CORT. All validated GBS, in both the low-CORT and high-CORT groups, displayed mineralocorticoid receptor binding, which remained relatively constant from 30 μg/kg CORT upward. Motif analysis revealed that almost all GBS contained a glucocorticoid response element resembling the consensus motif in literature. In addition, motifs corresponding with new potential GR-interacting proteins were identified, such as zinc finger and BTB domain containing 3 (Zbtb3) and CUP (CG11181 gene product from transcript CG11181-RB), which may be involved in GR-dependent transactivation and transrepression, respectively. In conclusion, our results highlight the existence of 2 populations of GBS in the rat hippocampal genome.


2020 ◽  
Author(s):  
Yucheng Wang ◽  
Eilis Hannon ◽  
Olivia A Grant ◽  
Tyler J Gorrie-Stone ◽  
Meena Kumari ◽  
...  

AbstractSex is an important covariate of epigenome-wide association studies due to its strong influence on DNA methylation patterns across numerous genomic positions. Nevertheless, many samples on the Gene Expression Omnibus (GEO) frequently lack a sex annotation or are incorrectly labelled. Considering the influence that sex imposes on DNA methylation patterns, it is necessary to ensure that methods for filtering poor samples and checking of sex assignment are accurate and widely applicable. In this paper, we presented a novel method to predict sex using only DNA methylation density signals, which can be readily applied to almost all DNA methylation datasets of different formats (raw IDATs or text files with only density signals) uploaded to GEO. We identified 4345 significantly (p < 0.01) sex-associated CpG sites present on both 450K and EPIC arrays, and constructed a sex classifier based on the two first components of PCAs from the two sex chromosomes. The proposed method is constructed using whole blood samples and exhibits good performance across a wide range of tissues. We further demonstrated that our method can be used to identify samples with sex chromosome aneuploidy, this function is validated by five Turner syndrome cases and one Klinefelter syndrome case. The proposed method has been integrated into the wateRmelon Bioconductor package.


2020 ◽  
Vol 15 (2) ◽  
pp. 124-133
Author(s):  
Olga Mironenko ◽  
◽  
Victoria Selnitseva ◽  
Lidia Soprun ◽  
Elena Shmushkevich ◽  
...  

The article presents information about circulating isolates Klebsiella pneumoniae in a hospital megapolis with properties of hypervirulence and simultaneous multiresistance. The resulting K. pneumonia isolates are of particular importance due to the emergence of resistance to almost all β-lactams due to the presence of carbapenemase metal-β-lactamase. Furthermore, the isolated strains producing carbapenemases possess mechanisms of resistance to a wide range of antimicrobial preparations, and the types of infectious process caused by carbapenemazo-producing enterobacteries are characterized by a high lethality level. Microbiological, biochemical, biophysical, molecular-genetic, biological, bioinformational and statistical methods of research were used in the work. A prospective method was used to identify the source of the infections. In the first stage, a microbiological study was carried out on biomaterials obtained from patients treated in a hospital in Saint Petersburg. After a microbiological study, 52 isolates of K. pneumoniae were obtained, 53.8 % of isolates had a hypermucoid phenotype and 98 % had carbapenemases:blaNDM type — 49 (92 %), blaNDM+OXA-48-like — 3 (8 %). Isolates with two new phenotypes have been isolated (no. 2511 and no. 2512). Isolates of no. 2512 LD50 had 10*2 BAC/ml, and plasmids such as Incfib(Mar), Inchi1b, and Incr were also found, with Incr-A plasmid emitted encoding resistance to fluoroquinolone: aac(6’)-Ib-cr and to β-lactam antibiotics: blaTEM-1B. The described data confirm the opinions of the researchers about the possible formation of a new “super pathogen” — instantaneously hypervirulent and plural resistant strain of K. pneumoniae.


Sign in / Sign up

Export Citation Format

Share Document