scholarly journals Synergistic Effect of Chitosan and Selenium Nanoparticles on Biodegradation and Antibacterial Properties of Collagenous Scaffolds Designed for Infected Burn Wounds

Nanomaterials ◽  
2020 ◽  
Vol 10 (10) ◽  
pp. 1971
Author(s):  
Jana Dorazilová ◽  
Johana Muchová ◽  
Kristýna Šmerková ◽  
Silvia Kočiová ◽  
Pavel Diviš ◽  
...  

A highly porous scaffold is a desirable outcome in the field of tissue engineering. The porous structure mediates water-retaining properties that ensure good nutrient transportation as well as creates a suitable environment for cells. In this study, porous antibacterial collagenous scaffolds containing chitosan and selenium nanoparticles (SeNPs) as antibacterial agents were studied. The addition of antibacterial agents increased the application potential of the material for infected and chronic wounds. The morphology, swelling, biodegradation, and antibacterial activity of collagen-based scaffolds were characterized systematically to investigate the overall impact of the antibacterial additives. The additives visibly influenced the morphology, water-retaining properties as well as the stability of the materials in the presence of collagenase enzymes. Even at concentrations as low as 5 ppm of SeNPs, modified polymeric scaffolds showed considerable inhibition activity towards Gram-positive bacterial strains such as Staphylococcus aureus and methicillin-resistant Staphylococcus aureus and Staphylococcus epidermidis in a dose-dependent manner.

Author(s):  
Dian Mayasari ◽  
Yosi B. Murti ◽  
Sylvia U. T. Pratiwi ◽  
Sudarsono Sudarsono

The emergence of multi-resistant strains of bacteria reinforces the need to discover new antibacterial agents that are able to combat resistant microorganisms. Medicinal plants are a valuable natural source of bioactive substances against various infectious diseases. Melastoma malabathricum L. is an important herb that is traditionally used to treat several ailments associated with microbial infection diseases such as wounds, diarrhea, dysentery, and toothache. This study investigated extracts of M. malabathricum L. for antibacterial properties against Staphylococcus aureus and Methicillin-resistant Staphylococcus aureus (MRSA). Disc diffusion and TLC-contact bioautography techniques were employed to examine antibacterial properties of n-hexane, ethyl acetate, and ethanol extracts with observations of diameter inhibition zones and Rf values. Investigation of active compounds in TLC-bioautography used several reagents including citroboric, cerium (IV) sulfate and 2,2-diphenyl-1-picrylhydrazyl (DPPH), continued by identification of chromatogram profiles through densitometry analysis. The three extracts showed good inhibition against bacterial strains with diameter inhibition zones in the range of 8.0 – 14.0 mm with a number of active spots on TLC-contact bioautography for each extract. This plant may serve as useful source of antibacterial agents for resistant microorganisms and further investigation is needed of its bioactive pure compounds as well as their particular therapeutic potentials and applications.


2014 ◽  
Vol 875-877 ◽  
pp. 87-90 ◽  
Author(s):  
Chutimon Satirapipathkul ◽  
Tanakan Chatdum

The film-forming potential of isolate of seed polysaccharide fromCassia fistulawas investigated. Increasing the glycerol concentration in the film increased elongation at break, film solubility and water vapor permeability but decreased tensile strength (TS). The film impregnated with the acetone extract ofAtractylodes lanceawas assessed for inhibition ofEscherichia coliandStaphylococcus aureus. The obtained results showed that the films exhibited antibacterial activity against both bacterial strains. Disc-diffusion assay revealed that the film resulted in a larger inhibition zone around the film onStaphylococcus aureusthan it did onEscherichia coliat the same extract concentrations (0.1 to 0.9 wt %). It can be seen that the film has satisfactory physical and antibacterial properties.


2019 ◽  
Vol 4 (1) ◽  
pp. 6-20 ◽  
Author(s):  
Panagiota Moutsatsou ◽  
Karen Coopman ◽  
Stella Georgiadou

Background: Within the healthcare industry, including the care of chronic wounds, the challenge of antimicrobial resistance continues to grow. As such, there is a need to develop new treatments that can reduce the bioburden in wounds. Objective: The present study is focused on the development of polyaniline (PANI) / chitosan (CH) nanofibrous electrospun membranes and evaluates their antibacterial properties. Methods: To this end, experimental design was used to determine the electrospinning windows of both pure chitosan and PANI/CH blends of different ratios (1:3, 3:5, 1:1). The effect of key environmental and process parameters (relative humidity and applied voltage) was determined, as well as the effect of the PANI/CH ratio in the blend and the molecular interactions between PANI and chitosan that led to jet stability. Results: The nanofibrous mats were evaluated regarding their morphology and antibacterial effect against model gram positive and gram negative bacterial strains, namely B. subtilis and E. coli. High PANI content mats show increased bactericidal activity against both bacterial strains. Conclusion: The blend fibre membranes combine the materials’ respective properties, namely electrical conductivity, biocompatibility and antibacterial activity. This study suggests that electrospun PANI/CH membranes are promising candidates for healthcare applications, such as wound dressings.


Author(s):  
Krishna Reddy BV ◽  
Avinash Kumar G ◽  
Nageswara Rao G

Nanoparticles have their demand in various fields of science and technology and their applications extend even in medical and pharmaceutical arena. They have been used as preservatives, diagnosing aids and potent antibacterial agents. But their production is a serious matter of concern when it comes to cost, efficacy and toxicity issues. Overcoming these limitations green synthesis has taken its advantage for their commercial and large scale synthesis. This research will focus on the preparation of nano particles of silver with the help of purified leaf extract from Lannea coromandelica and evaluation of the same using UV-Vis Spectrophotometry. The nanoparticles exhibited surface plasmon resonance at 420nm in UV spectroscopy. Futhermore, nanoparticles have been evaluated for their antibacterial activity on Putida vulgaris, Staphylococcus aureus, and Bacillus subtillis. The results proved the eco friendly synthesized silver nanoparticles have a good antibacterial and can be used effectively in therapies targeting infections and infectious wounds.


Molecules ◽  
2019 ◽  
Vol 24 (11) ◽  
pp. 2047 ◽  
Author(s):  
Izabela Przybyłek ◽  
Tomasz M. Karpiński

Researchers are continuing to discover all the properties of propolis due to its complex composition and associated broad spectrum of activities. This review aims to characterize the latest scientific reports in the field of antibacterial activity of this substance. The results of studies on the influence of propolis on more than 600 bacterial strains were analyzed. The greater activity of propolis against Gram-positive bacteria than Gram-negative was confirmed. Moreover, the antimicrobial activity of propolis from different regions of the world was compared. As a result, high activity of propolis from the Middle East was found in relation to both, Gram-positive (Staphylococcus aureus) and Gram-negative (Escherichia coli) strains. Simultaneously, the lowest activity was demonstrated for propolis samples from Germany, Ireland and Korea.


Author(s):  
Fatemeh Sadat Ghoreishi ◽  
Rasoul Roghanian ◽  
Giti Emtiazi

Chronic wounds have made a challenge in medical healthcare due to their biofilm infections, which reduce the penetrance of the antibacterial agents in the injury site. In infected wounds, the most common bacterial strains are Staphylococcus aureus (S. aureus) and Pseudomonas aeruginosa (P. aeruginosa). Biofilm disruption in chronic wounds is crucial in wound healing. Due to their broad-spectrum antibacterial properties and fewer side effects, anti-biofilm peptides, especially bacteriocins, are promising in the healing of chronic wounds by biofilm destruction. This study reviews the effects of antimicrobial and anti-biofilm agents, including bacteriocins and protease enzymes as a novel approach, on wound healing, along with analyzing the molecular docking between a bacterial protease and biofilm components. Among a large number of anti-biofilm bacteriocins identified up to now, seven types have been registered in the antimicrobial peptides (AMPs) database. Although it is believed that bacterial proteases are harmful in wound healing, it has recently been demonstrated that these proteases like the human serine protease, in combination with AMPs, can improve wound healing by biofilm destruction. In this work, docking results between metalloprotease from Paenibacillus polymyxa (P. polymyxa) and proteins of S. aureus and P. aeruginosa involved in biofilm production, showed that this bacterial protease could efficiently interact with biofilm components. Infected wound healing is an important challenge in clinical trials due to biofilm production by bacterial pathogens. Therefore, simultaneous use of proteases or anti-biofilm peptides with antimicrobial agents could be a promising method for chronic wound healing.


2020 ◽  
Author(s):  
Mais Maree ◽  
Le Thuy Thi Nguyen ◽  
Ryosuke L. Ohniwa ◽  
Shenghe Huang ◽  
Masato Higashide ◽  
...  

AbstractMethicillin-resistant Staphylococcus aureus (MRSA) carries the resistance gene mecA in the staphylococcal cassette chromosome (SCC) that disseminates among staphylococci but the cell-to-cell transmission mechanism of SCC has not been clarified for half a century1. Here, we present evidence for efficient natural transformation in Staphylococcus aureus and its relevance in SCCmec transmission. We found that growth in biofilm conditions increased the transformation efficiency in a dependent manner on two component signal transduction systems, TCS13 (AgrCA) and TCS17 (BraSR). Strikingly, we demonstrate that natural transformation mediates the transfer of SCCmec from MRSA or methicillin-resistant coagulase negative staphylococci to methicillin-sensitive S. aureus. The site-specific insertion/excision system mediated by cassette chromosome recombinases was essential for SCCmec transformation while the stability of SCCmec varied depending on SCC types and recipients. We propose that natural transformation is the key process in the emergence of MRSA.


Author(s):  
Vijayta Gupta ◽  
Vinay Kant ◽  
Meena Sharma

The promising results of metal oxides nanoparticles in different areas including the biological system lead us to investigate the antioxidant and antimicrobial actions of chemically synthesized cobalt oxide (Co3O4) nanoparticles. The different concentrations of synthesized Co3O4 nanoparticles were prepared and evaluated for different parameters at different time intervals i.e.  on day 1, 30 and 60 after preparations.  Co3O4 nanoparticles synthesized in this study were of 52.2 nm average size with a polydispersity index of 0.465. We observed that Co3O4 nanoparticles scavenge different in vitro free radicals (DPPH, ABTS, superoxide anion and hydrogen peroxide radicals) in concentration dependent manner. The percentage of inhibitions of free radicals by Co3O4 nanoparticles was markedly more on day 1 as compared to day 30 and 60. The IC50 values of Co3O4 nanoparticles for these free radicals were also on day 1 as compared to day 30 and 60. The Co3O4 nanoparticles showed the antibacterial actions against both the bacterial strains i.e. S. aureus and E. coli. The MIC and MBC values revealed that action of Co3O4 nanoparticles was more against E. coli than S. aureus. The MIC and MBC values were lower on day 1 as compared to day 30 and 60 with respective to specific bacteria. In conclusions, the Co3O4 nanoparticles synthesized in this study showed potent antioxidant and antibacterial properties due to which it may serve as promising candidate for the combat the biological problems humans, animals and plants associated with reactive oxygen species and bacteria.


2020 ◽  
Vol 75 (6) ◽  
pp. 1530-1536
Author(s):  
E J Growcott ◽  
L Gamboa ◽  
T Roth ◽  
S Lopez ◽  
C S Osborne

Abstract Objectives The neutropenic murine thigh infection model was used to assess the effectiveness of IID572, a novel β-lactamase inhibitor, in rescuing piperacillin activity against bacterial strains expressing various β-lactamase enzymes. Methods Mice (n = 4/group) were inoculated with Enterobacteriaceae or Staphylococcus aureus bacterial strains expressing a range of β-lactamases via intramuscular injection. Two hours after bacterial inoculation, subcutaneous treatment with piperacillin/IID572 or piperacillin/tazobactam every 3 h was initiated. Animals were euthanized via CO2 24 h after the start of therapy and bacterial cfu (log10 cfu) per thigh was determined, and the static dose was calculated. Results In a dose-dependent manner, piperacillin/IID572 reduced the thigh bacterial burden in models established with Enterobacteriaceae producing class A, C and D β-lactamases (e.g. ESBLs, KPC, CMY-2 and OXA-48). Piperacillin/IID572 was also efficacious against MSSA strains, including one producing β-lactamase. Static doses of piperacillin/IID572 were calculable from animals infected with all strains tested and the calculated static doses ranged from 195 to 4612 mg/kg/day piperacillin, the active component in the combination. Of the 13 strains investigated, a 1 log10 bacterial reduction was achieved for 9 isolates and a 2 log10 reduction was achieved for 3 isolates; piperacillin/tazobactam was not efficacious against 6 of the 13 isolates tested. Conclusions In contrast to tazobactam, IID572 was able to rescue piperacillin efficacy in murine thigh infection models established with β-lactamase-producing strains of Enterobacteriaceae and S. aureus, including those expressing ESBLs or serine carbapenemases.


2016 ◽  
Vol 60 (1) ◽  
pp. 5-18 ◽  
Author(s):  
Lia M. Junie ◽  
Mihaela L. Vică ◽  
Mirel Glevitzky ◽  
Horea V. Matei

AbstractThe first aim of the study was to compare the antibacterial activity of several types of honey of different origins, against some bacterial resistant strains. The strains had been isolated from patients. The second aim was to discover the correlations between the antibacterial character of honey and the physico-chemical properties of the honey. Ten honey samples (polyfloral, linden, acacia, manna, and sunflower) from the centre of Romania were tested to determine their antibacterial properties against the following bacterial species: Pseudomonas aeruginosa, Escherichia coli, Staphylococcus aureus, Staphylococcus epidermidis, Salmonella enterica serovar Typhimurium, Bacillus cereus, Bacillus subtilis, and Listeria monocytogenes. Bacterial cultures in nutrient broth and the culture medium Mueller-Hinton agar were used. The susceptibility to antibiotics was performed using the disk diffusion method. All honey samples showed antibacterial activity on the isolated bacterial strains, in particular polyfloral (inhibition zone 13-21 mm in diameter) - because it is the source of several plants, and manna (inhibition zone 13-19.5 mm in diameter), and sunflower (inhibition zone 14-18.5 mm in diameter). Pure honey has a significant antibacterial activity against some bacteria which are resistant to antibiotics. Bacterial strains differed in their sensitivity to honeys. Pseudomonas aeruginosa and Staphylococcus aureus were the most sensitive. The present study revealed that honey antibacterial activity depends on the origin of the honey. We also found that there was a significant correlation between antibacterial activity of honeys and the colour of the honey but not between acidity and pH. The statistical analysis showed that the honey type influences the antibacterial activity (diameter of the bacterial strains inhibition zones).


Sign in / Sign up

Export Citation Format

Share Document