scholarly journals Microfluidics Technology for the Design and Formulation of Nanomedicines

Nanomaterials ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 3440
Author(s):  
Eman Jaradat ◽  
Edward Weaver ◽  
Adam Meziane ◽  
Dimitrios A. Lamprou

In conventional drug administration, drug molecules cross multiple biological barriers, distribute randomly in the tissues, and can release insufficient concentrations at the desired pathological site. Controlling the delivery of the molecules can increase the concentration of the drug in the desired location, leading to improved efficacy, and reducing the unwanted effects of the molecules under investigation. Nanoparticles (NPs), have shown a distinctive potential in targeting drugs due to their unique properties, such as large surface area and quantum properties. A variety of NPs have been used over the years for the encapsulation of different drugs and biologics, acting as drug carriers, including lipid-based and polymeric NPs. Applying NP platforms in medicines significantly improves the disease diagnosis and therapy. Several conventional methods have been used for the manufacturing of drug loaded NPs, with conventional manufacturing methods having several limitations, leading to multiple drawbacks, including NPs with large particle size and broad size distribution (high polydispersity index), besides the unreproducible formulation and high batch-to-batch variability. Therefore, new methods such as microfluidics (MFs) need to be investigated more thoroughly. MFs, is a novel manufacturing method that uses microchannels to produce a size-controlled and monodispersed NP formulation. In this review, different formulation methods of polymeric and lipid-based NPs will be discussed, emphasizing the different manufacturing methods and their advantages and limitations and how microfluidics has the capacity to overcome these limitations and improve the role of NPs as an effective drug delivery system.

Molecules ◽  
2020 ◽  
Vol 25 (12) ◽  
pp. 2848 ◽  
Author(s):  
Giuseppina Raffaini ◽  
Fabio Ganazzoli

Drug concentration plays an important role in the interaction with drug carriers affecting the kinetics of release process and toxicology effects. Cyclodextrins (CDs) can solubilize hydrophobic drugs in water enhancing their bioavailability. In this theoretical study based on molecular mechanics and molecular dynamics methods, the interactions between β-cyclodextrin and piroxicam, an important nonsteroidal anti-inflammatory drug, were investigated. At first, both host–guest complexes with native β-CD in the 1:1 and in 2:1 stoichiometry were considered without assuming any initial a priori inclusion: the resulting inclusion complexes were in good agreement with literature NMR data. The interaction between piroxicam and a β-CD nanosponge (NS) was then modeled at different concentrations. Two inclusion mechanisms were found. Moreover, piroxicam can interact with the external NS surface or with its crosslinkers, also forming one nanopore. At larger concentration, a nucleation process of drug aggregation induced by the first layer of adsorbed piroxicam molecules is observed. The flexibility of crosslinked β-CDs, which may be swollen or quite compact, changing the surface area accessible to drug molecules, and the dimension of the aggregate nucleated on the NS surface are important factors possibly affecting the kinetics of release, which shall be theoretically studied in more detail at specific concentrations.


2020 ◽  
Vol 6 (3) ◽  
pp. 204-212
Author(s):  
Nigora Vokhidova ◽  

The article discusses the effectiveness of innovative approaches in teaching Russian as a foreign language. It is noted that the use of new methods makes it possible to take into account the knowledge already acquired by the student for studying the Russian language and developing creative skills. The role of such a form of training as group work is shown, and some methods of interactive communication between students in practical classes in the Russian language are considered


Author(s):  
Pramod Dhakal ◽  
Ankit a Achary ◽  
Vedamurthy Joshi

Bioenhancers are drug facilitator which do not show the typical drug activity but in combination to enhance the activity of other molecule in several way including increase the bioavailability of drug across the membrane, potentiating the drug molecules by conformational interaction, acting as receptor for drug molecules and making target cell more receptive to drugs and promote and increase the bioactivity or bioavailability or the uptake of drugs in combination therapy. The objective of the present study was to evaluate the antibacterial and activity of combination in Azadirachta indica extract with cow urine distillate and pepper extract against common pathogenic bacteria, a causative agent of watery diarrhea. It has been found that Indian indigenous cow urine and its distillate also possess bioenhancing ability. Bioenhancing role of cow urine distillate (CUD) and pepper extract was investigated on antibacterial activity of ethanol extract of Azadirachta indica. Antibacterial activity of ethanol extract neem alone and in combination with CUD and pepper extract were determined the ATCC strains against Staphylococcus aureus, Klebsiella pneumoniae, Pseudomonas aeruginosa and E-coli by cup plate diffusion method. Ethanol extract of neem has showed more effect on P. aeruginosa, E-coli than S. aureus and K. pneumonia with combination of CUD and pepper extract. CUD and pepper did not show any inhibition of test bacteria in low concentration. The antibacterial effect of combination of extract and CUD was higher than the inhibition caused by extract alone and is suggestive of the bioenhancing role of cow urine distillate and pepper. Moreover, inhibition of test bacteria was observed with less concentration of extract on combining with CUD


2020 ◽  
Vol 15 (6) ◽  
pp. 482-491 ◽  
Author(s):  
Milena Kostadinova ◽  
Milena Mourdjeva

Mesenchymal stem/stromal cells (MSCs) are localized throughout the adult body as a small population in the stroma of the tissue concerned. In injury, tissue damage, or tumor formation, they are activated and leave their niche to migrate to the site of injury, where they release a plethora of growth factors, cytokines, and other bioactive molecules. With the accumulation of data about the interaction between MSCs and tumor cells, the dualistic role of MSCs remains unclear. However, a large number of studies have demonstrated the natural anti-tumor properties inherent in MSCs, so this is the basis for intensive research for new methods using MSCs as a tool to suppress cancer cell development. This review focuses specifically on advanced approaches in modifying MSCs to become a powerful, precision- targeted tool for killing cancer cells, but not normal healthy cells. Suppression of tumor growth by MSCs can be accomplished by inducing apoptosis or cell cycle arrest, suppressing tumor angiogenesis, or blocking mechanisms mediating metastasis. In addition, the chemosensitivity of cancer cells may be increased so that the dose of the chemotherapeutic agent used could be significantly reduced.


2020 ◽  
Vol 963 (9) ◽  
pp. 30-43
Author(s):  
M.Yu. Orlov

Studying the current state of cartography and ways of further developing the industry, the role of the map in the future of the society, new methods of promoting cartographic products is impossible without a deep scientific analyzing all the paths, events and factors influencing its formation and development throughout all the historic steps of cartographic production in Russia. In the article, the history of cartographic production in Russia is considered together with the development of private, state and military cartography, since, despite some differences, they have a common technical, technological and production basis. The author describes the stages of originating, formation and growth of industrial cartographic production from the beginning of the XVIII century until now. The connection between the change of political formations and technological structures with the mentioned stages of maps and atlases production is considered. Each stage is studied in detail, a step-by-step analysis was carried out, and the characteristics of each stage are described. All the events and facts are given in chronological order, highlighting especially significant moments influencing the evolution of cartographic production. The data on the volumes of printing and sales of atlases and maps by commercial and state enterprises are presented. The main trends and lines of further development of cartographic production in Russia are studied.


Author(s):  
Lorenzo Lisuzzo ◽  
Giuseppe Cavallaro ◽  
Stefana Milioto ◽  
Giuseppe Lazzara

AbstractIn this work, we investigated the effects of the vacuum pumping on both the loading efficiencies and the release kinetics of halloysite nanotubes filled with drug molecules dissolved in ethanol. As model drugs, salicylic acid and sodium diclofenac were selected. For comparison, the loading of the drug molecules was conducted on platy kaolinite to explore the key role of the hollow tubular morphology on the filling mechanism of halloysite. The effects of the pressure conditions used in the loading protocol were interpreted and discussed on the basis of the thermodynamic results provided by Knudsen thermogravimetry, which demonstrated the ethanol confinement inside the halloysite cavity. Several techniques (TEM, FTIR spectroscopy, DLS and $$\zeta$$ ζ -potential experiments) were employed to characterize the drug filled nanoclays. Besides, release kinetics of the drugs were studied and interpreted according to the loading mechanism. This work represents a further step for the development of nanotubular carriers with tunable release feature based on the loading protocol and drug localization into the carrier. Graphic abstract The filling efficiency of halloysite nanotubes is enhanced by the reduction of the pressure conditions used in the loading protocol.


Author(s):  
Yunhao Zhang ◽  
Hongxin Qin ◽  
Yuting Huang ◽  
Feng Zhang ◽  
Hairong Liu ◽  
...  

Due to the essential role of Fe3+ in physiological and pathological processes, the detection of Fe3+ has drawn an increasing attention in the field of disease diagnosis and environmental protection....


Molecules ◽  
2021 ◽  
Vol 26 (12) ◽  
pp. 3610
Author(s):  
Jialin Yu ◽  
Huayu Qiu ◽  
Shouchun Yin ◽  
Hebin Wang ◽  
Yang Li

Pluronic polymers (pluronics) are a unique class of synthetic triblock copolymers containing hydrophobic polypropylene oxide (PPO) and hydrophilic polyethylene oxide (PEO) arranged in the PEO-PPO-PEO manner. Due to their excellent biocompatibility and amphiphilic properties, pluronics are an ideal and promising biological material, which is widely used in drug delivery, disease diagnosis, and treatment, among other applications. Through self-assembly or in combination with other materials, pluronics can form nano carriers with different morphologies, representing a kind of multifunctional pharmaceutical excipients. In recent years, the utilization of pluronic-based multi-functional drug carriers in tumor treatment has become widespread, and various responsive drug carriers are designed according to the characteristics of the tumor microenvironment, resulting in major progress in tumor therapy. This review introduces the specific role of pluronic-based polymer drug delivery systems in tumor therapy, focusing on their physical and chemical properties as well as the design aspects of pluronic polymers. Finally, using newer literature reports, this review provides insights into the future potential and challenges posed by different pluronic-based polymer drug delivery systems in tumor therapy.


Author(s):  
F. Birmann

In the first part a static investigation is made of the total elasticity of the track on soft sub-soil and loose ballast, and for rock and consolidated bedding. The oscillating mass of the permanent way will differ in behaviour, depending on construction, rail profile, sleeper spacing, etc. The damping and the phase shift can be determined by modern measuring techniques and a few limit values are given. In the second part the dynamic behaviour of the track is investigated for velocities up to 200 km/h. New methods of measuring the wheel loading on the rail are briefly described. Elements of permanent way calculation, based on new methods of computation, are briefly considered. The role of the lateral elasticity of the rail is shown in the third part, theoretically and according to measurements.


Author(s):  
Pandey Swarnima ◽  
Sushant Kumar

The paper is aimed to provide a comprehensive review on nanoparticles, methods of preparation, applications in drug delivery. In recent years, there has been an exponential interest within the development of novel drug delivery systems using nanoparticles. Nanoparticles offers significant advantages over the conventional drug delivery in terms of high stability, high specificity, high drug carrying capacity, ability for controlled release, possibility to use in several route of administration and therefore the capability to deliver both hydrophilic and hydrophobic drug molecules. This review focuses on classification, methods of preparation, characterization, application, advantages of nanoparticles and health perspectives.


Sign in / Sign up

Export Citation Format

Share Document