scholarly journals MicroRNA-Based Therapeutics for Drug-Resistant Colorectal Cancer

2021 ◽  
Vol 14 (2) ◽  
pp. 136
Author(s):  
Eunsun Jung ◽  
Jinhyeon Choi ◽  
Jang-Seong Kim ◽  
Tae-Su Han

Although therapeutic approaches for patients with colorectal cancer (CRC) have improved in the past decades, the problem of drug resistance still persists and acts as a major obstacle for effective therapy. Many studies have shown that drug resistance is related to reduced drug uptake, modification of drug targets, and/or transformation of cell cycle checkpoints. A growing body of evidence indicates that several microRNAs (miRNAs) may contribute to the drug resistance to chemotherapy, targeted therapy, and immunotherapy by regulating the drug resistance-related target genes in CRC. These drug resistance-related miRNAs may be used as promising biomarkers for predicting drug response or as potential therapeutic targets for treating patients with CRC. In this review, we summarized the recent discoveries regarding anti-cancer drug-related miRNAs and their molecular mechanisms in CRC. Furthermore, we discussed the challenges associated with the clinical application of miRNAs as biomarkers for the diagnosis of drug-resistant patients and as therapeutic targets for CRC treatment.


Antibiotics ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 1530
Author(s):  
Luke L. Proctor ◽  
Whitney L. Ward ◽  
Conner S. Roggy ◽  
Alexandra G. Koontz ◽  
Katie M. Clark ◽  
...  

Despite advances in antimicrobial therapy and even the advent of some effective vaccines, Pseudomonas aeruginosa (P. aeruginosa) remains a significant cause of infectious disease, primarily due to antibiotic resistance. Although P. aeruginosa is commonly treatable with readily available therapeutics, these therapies are not always efficacious, particularly for certain classes of patients (e.g., cystic fibrosis (CF)) and for drug-resistant strains. Multi-drug resistant P. aeruginosa infections are listed on both the CDC’s and WHO’s list of serious worldwide threats. This increasing emergence of drug resistance and prevalence of P. aeruginosa highlights the need to identify new therapeutic strategies. Combinations of monoclonal antibodies against different targets and epitopes have demonstrated synergistic efficacy with each other as well as in combination with antimicrobial agents typically used to treat these infections. Such a strategy has reduced the ability of infectious agents to develop resistance. This manuscript details the development of potential therapeutic targets for polyclonal antibody therapies to combat the emergence of multidrug-resistant P. aeruginosa infections. In particular, potential drug targets for combinational immunotherapy against P. aeruginosa are identified to combat current and future drug resistance.



2019 ◽  
Vol 20 (7) ◽  
pp. 1707 ◽  
Author(s):  
Chul Won Yun ◽  
Yong-Seok Han ◽  
Sang Hun Lee

Anti-cancer drug resistance is a serious issue for patients with colorectal cancer (CRC). Although recent studies have shown the mechanism by which CRC cells become drug resistant, novel strategies for overcoming this drug resistance have not yet been developed. To address this problem, we characterized 5-fluorouracil (5FU)-resistant CRC cells after treatment with 5FU, and focused on the expression of peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α) in these cells. In 5FU-resistant CRC cells, the 5FU did not considerably decrease the mitochondrial biogenesis or mitochondrial complex I and IV activities, and only partially decreased the antioxidant enzymatic activity, oxygen consumption ratio, and cell survival. The expression of PGC-1α was remarkably increased in the 5FU-resistant CRC cells compared with the 5FU-sensitive CRC cells. The 5FU-resistant CRC cells displayed enhanced mitochondrial biogenesis, oxidative phosphorylation, and antioxidant enzyme activities against 5FU-induced reactive oxygen species, because of the increased expression of PGC-1α. PGC-1α inhibited 5FU-induced endoplasmic reticulum (ER) stress in the 5FU-resistant CRC cells, resulting in the suppression of apoptosis. These findings reveal that PGC-1α plays an important role in drug resistance in 5FU-resistant CRC cells. Moreover, PGC-1α could serve as a novel target in patients with 5FU-resistant CRC.



2016 ◽  
Vol 40 (1-2) ◽  
pp. 62-76 ◽  
Author(s):  
Tao Xie ◽  
Mengxi Huang ◽  
Ye Wang ◽  
Liya Wang ◽  
Cheng Chen ◽  
...  

Chemotherapy and targeted therapy are the main options for andvanced colorectal cancer (CRC). However, resistance to these therapies is a major challenge in the clinic. Understanding molecular mechanisms and developing effective strategies against the drug resistance are highly desired. Increasing evidence has revealed that microRNAs (miRNAs) are closely linked to drug resistance in CRC. The explosion of knowledge in this field has brought forward new predictive and therapeutic opportunities. In this review, we systemically summarize the roles of miRNAs as regulators, tissue or circulating biomarkers, and therapeutics in the CRC resistance to 5-fluorouracil (5-FU), oxaliplatin and anti-EGFR therapy. We also discuss the potential unsettled issues and future directions concerning these processes.



2020 ◽  
Vol 20 (9) ◽  
pp. 779-787
Author(s):  
Kajal Ghosal ◽  
Christian Agatemor ◽  
Richard I. Han ◽  
Amy T. Ku ◽  
Sabu Thomas ◽  
...  

Chemotherapy employs anti-cancer drugs to stop the growth of cancerous cells, but one common obstacle to the success is the development of chemoresistance, which leads to failure of the previously effective anti-cancer drugs. Resistance arises from different mechanistic pathways, and in this critical review, we focus on the Fanconi Anemia (FA) pathway in chemoresistance. This pathway has yet to be intensively researched by mainstream cancer researchers. This review aims to inspire a new thrust toward the contribution of the FA pathway to drug resistance in cancer. We believe an indepth understanding of this pathway will open new frontiers to effectively treat drug-resistant cancer.



2017 ◽  
Vol 17 (19) ◽  
pp. 2129-2142 ◽  
Author(s):  
Renata Płocinska ◽  
Malgorzata Korycka-Machala ◽  
Przemyslaw Plocinski ◽  
Jaroslaw Dziadek

Background: Mycobacterium tuberculosis (M. tuberculosis), the causative agent of tuberculosis, is a leading infectious disease organism, causing millions of deaths each year. This serious pathogen has been greatly spread worldwide and recent years have observed an increase in the number of multi-drug resistant and totally drug resistant M. tuberculosis strains (WHO report, 2014). The danger of tuberculosis becoming an incurable disease has emphasized the need for the discovery of a new generation of antimicrobial agents. The development of novel alternative medical strategies, new drugs and the search for optimal drug targets are top priority areas of tuberculosis research. Factors: Key characteristics of mycobacteria include: slow growth, the ability to transform into a metabolically silent - latent state, intrinsic drug resistance and the relatively rapid development of acquired drug resistance. These factors make finding an ideal antituberculosis drug enormously challenging, even if it is designed to treat drug sensitive tuberculosis strains. A vast majority of canonical antibiotics including antituberculosis agents target bacterial cell wall biosynthesis or DNA/RNA processing. Novel therapeutic approaches are being tested to target mycobacterial cell division, twocomponent regulatory factors, lipid synthesis and the transition between the latent and actively growing states. Discussion and Conclusion: This review discusses the choice of cellular targets for an antituberculosis therapy, describes putative drug targets evaluated in the recent literature and summarizes potential candidates under clinical and pre-clinical development. We focus on the key cellular process of DNA replication, as a prominent target for future antituberculosis therapy. We describe two main pathways: the biosynthesis of nucleic acids precursors – the nucleotides, and the synthesis of DNA molecules. We summarize data regarding replication associated proteins that are critical for nucleotide synthesis, initiation, unwinding and elongation of the DNA during the replication process. They are pivotal processes required for successful multiplication of the bacterial cells and hence they are extensively investigated for the development of antituberculosis drugs. Finally, we summarize the most potent inhibitors of DNA synthesis and provide an up to date report on their status in the clinical trials.



Cells ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 433
Author(s):  
Bijesh George ◽  
P. Mukundan Pillai ◽  
Aswathy Mary Paul ◽  
Revikumar Amjesh ◽  
Kim Leitzel ◽  
...  

To define the growing significance of cellular targets and/or effectors of cancer drugs, we examined the fitness dependency of cellular targets and effectors of cancer drug targets across human cancer cells from 19 cancer types. We observed that the deletion of 35 out of 47 cellular effectors and/or targets of oncology drugs did not result in the expected loss of cell fitness in appropriate cancer types for which drugs targeting or utilizing these molecules for their actions were approved. Additionally, our analysis recognized 43 cellular molecules as fitness genes in several cancer types in which these drugs were not approved, and thus, providing clues for repurposing certain approved oncology drugs in such cancer types. For example, we found a widespread upregulation and fitness dependency of several components of the mevalonate and purine biosynthesis pathways (currently targeted by bisphosphonates, statins, and pemetrexed in certain cancers) and an association between the overexpression of these molecules and reduction in the overall survival duration of patients with breast and other hard-to-treat cancers, for which such drugs are not approved. In brief, the present analysis raised cautions about off-target and undesirable effects of certain oncology drugs in a subset of cancers where the intended cellular effectors of drug might not be good fitness genes and that this study offers a potential rationale for repurposing certain approved oncology drugs for targeted therapeutics in additional cancer types.



Cancers ◽  
2019 ◽  
Vol 11 (7) ◽  
pp. 983 ◽  
Author(s):  
Otília Menyhart ◽  
Tatsuhiko Kakisaka ◽  
Lőrinc Sándor Pongor ◽  
Hiroyuki Uetake ◽  
Ajay Goel ◽  
...  

Background: Numerous driver mutations have been identified in colorectal cancer (CRC), but their relevance to the development of targeted therapies remains elusive. The secondary effects of pathogenic driver mutations on downstream signaling pathways offer a potential approach for the identification of therapeutic targets. We aimed to identify differentially expressed genes as potential drug targets linked to driver mutations. Methods: Somatic mutations and the gene expression data of 582 CRC patients were utilized, incorporating the mutational status of 39,916 and the expression levels of 20,500 genes. To uncover candidate targets, the expression levels of various genes in wild-type and mutant cases for the most frequent disruptive mutations were compared with a Mann–Whitney test. A survival analysis was performed in 2100 patients with transcriptomic gene expression data. Up-regulated genes associated with worse survival were filtered for potentially actionable targets. The most significant hits were validated in an independent set of 171 CRC patients. Results: Altogether, 426 disruptive mutation-associated upregulated genes were identified. Among these, 95 were linked to worse recurrence-free survival (RFS). Based on the druggability filter, 37 potentially actionable targets were revealed. We selected seven genes and validated their expression in 171 patient specimens. The best independently validated combinations were DUSP4 (p = 2.6 × 10−12) in ACVR2A mutated (7.7%) patients; BMP4 (p = 1.6 × 10−04) in SOX9 mutated (8.1%) patients; TRIB2 (p = 1.35 × 10−14) in ACVR2A mutated patients; VSIG4 (p = 2.6 × 10−05) in ANK3 mutated (7.6%) patients, and DUSP4 (p = 7.1 × 10−04) in AMER1 mutated (8.2%) patients. Conclusions: The results uncovered potentially druggable genes in colorectal cancer. The identified mutations could enable future patient stratification for targeted therapy.



Author(s):  
Suwisit MANMUAN ◽  
Ponwit MANMUAN ◽  
Punyo YOYKAEW ◽  
Piyachat THUETONG ◽  
Patchraporn ASIPONG ◽  
...  

Centella Asiatica has been traditionally used as herbal medicine to treat various disorders, such as ulcers and psoriatic disease. ECa233 is an herbal extract of Centella Asiatica containing madecassoside (46.3 %) and asiaticoside (41.6 %) that shows a highly acceptable safety profile appropriate for drug development and use as an herbal drug for humans. 5-fluorouracil (5-FU) is a chemotherapeutic agent generally known as the first-line chemotherapy for colorectal cancer. Representative combined chemotherapy with 5-FU, namely the FOLFOX regimen (5-FU, leucovorin, oxaliplatin), has been widely used in hospitals and is typically selected as a chemotherapeutic regimen in prescriptions. However, the unresolved problems appearing in clinical situations are the refusal to accept the chemotherapy leading to drug resistance and the severe side effects after being administered intravenously to the entire body. Therefore, the discovery of a novel pure standard agent to enhance the efficacy of 5-FU and overcome this drug resistance still needs to be explored. To assess the pharmacological activity and safety profile of ECa233 is a major goal in cancer drug discovery. ECa233 was evaluated for its anti-cancer, anti-migration, anti-invasive activities and was explored regarding the safety data on normal cells. The results demonstrated that ECa233 effectively inhibited the cell viability, colony forming, and truly inactivated cell migration/invasion through repressive the MMP-9 invasive factor. Pharmacological interaction with 5-FU was synergism in cancer cells and highly safe to normal cell growth. The results suggest that ECa233 could be used as a combinative drug therapy with standard chemotherapy treatment and other medicinal drugs such as a targeted therapy to treat colorectal cancer patients.



2020 ◽  
pp. 72-82
Author(s):  
Mossa Gardaneh ◽  
Zahra Nayeri ◽  
Parvin Akbari ◽  
Mahsa Gardaneh ◽  
Hasan Tahermansouri

Background: We investigated molecular mechanisms behind astaxanthinmediated induction of apoptosis in breast cancer cell lines toward combination therapy against cancer drug resistance. Methods: Breast cancer cell lines were treated with serial concentrations of astaxanthin to determine its IC50. We used drug-design software to predict interactions between astaxanthin and receptor tyrosine kinases or other key gene products involved in intracellular signaling pathways. Changes in gene expression were examined using RT-PCR. The effect of astaxanthin-nanocarbons combinations on cancer cells was also evaluated. Results: Astaxanthin induced cell death in all three breast cancer cell lines was examined so that its IC50 in two HER2-amplifying lines SKBR3 and BT-474 stood, respectively, at 36 and 37 ?M; however, this figure for MCF-7 was significantly lowered to 23 ?M (P<0.05). Astaxanthin-treated SKBR3 cells showed apoptotic death upon co-staining. Our in silico examinations showed that some growth-promoting molecules are strongly bound by astaxanthin via their specific amino acid residues with their binding energy standing below -6 KCa/Mol. Next, astaxanthin was combined with either graphene oxide or carboxylated multi-walled carbon nanotube, with the latter affecting SKBR cell survival more extensively than the former (P<0.05). Finally, astaxanthin coinduced tumor suppressors p53 and PTEN but downregulated the expression of growth-inducing genes in treated cells. Conclusion: These findings indicate astaxanthin carries' multitarget antitumorigenic capacities and introduce the compound as a suitable candidate for combination therapy regimens against cancer growth and drug resistance. Development of animal models to elucidate interactions between the compound and tumor microenvironment could be a major step forward towards the inclusion of astaxanthin in cancer therapy trials.



PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e11429
Author(s):  
Zhaoping Liu ◽  
Yanyan Wang ◽  
Zhenru Xu ◽  
Shunling Yuan ◽  
Yanglin Ou ◽  
...  

Background Drug resistance is the main obstacle in the treatment of leukemia. As a member of the competitive endogenous RNA (ceRNA) mechanism, underlying roles of lncRNA are rarely reported in drug-resistant leukemia cells. Methods The gene expression profiles of lncRNAs and mRNAs in doxorubicin-resistant K562/ADR and sensitive K562 cells were established by RNA sequencing (RNA-seq). Expression of differentially expressed lncRNAs (DElncRNAs) and DEmRNAs was validated by qRT-PCR. The potential biological functions of DElncRNAs targets were identified by GO and KEGG pathway enrichment analyses, and the lncRNA-miRNA-mRNA ceRNA network was further constructed. K562/ADR cells were transfected with CCDC26 and LINC01515 siRNAs to detect the mRNA levels of GLRX5 and DICER1, respectively. The cell survival rate after transfection was detected by CCK-8 assay. Results The ceRNA network was composed of 409 lncRNA-miRNA pairs and 306 miRNA-mRNA pairs based on 67 DElncRNAs, 58 DEmiRNAs and 192 DEmRNAs. Knockdown of CCDC26 and LINC01515 increased the sensitivity of K562/ADR cells to doxorubicin and significantly reduced the half-maximal inhibitory concentration (IC50) of doxorubicin. Furthermore, knockdown of GLRX5 and DICER1 increased the sensitivity of K562/ADR cells to doxorubicin and significantly reduced the IC50 of doxorubicin. Conclusions The ceRNA regulatory networks may play important roles in drug resistance of leukemia cells. CCDC26/miR-140-5p/GLRX5 and LINC01515/miR-425-5p/DICER1 may be potential targets for drug resistance in K562/ADR cells. This study provides a promising strategy to overcome drug resistance and deepens the understanding of the ceRNA regulatory mechanism related to drug resistance in CML cells.



Sign in / Sign up

Export Citation Format

Share Document