scholarly journals Biomedical Applications of Hyaluronic Acid-Based Nanomaterials in Hyperthermic Cancer Therapy

Pharmaceutics ◽  
2019 ◽  
Vol 11 (7) ◽  
pp. 306 ◽  
Author(s):  
Subin Kim ◽  
Myeong ju Moon ◽  
Suchithra Poilil Surendran ◽  
Yong Yeon Jeong

Hyaluronic acid (HA) is a non-sulfated polysaccharide polymer with the properties of biodegradability, biocompatibility, and non-toxicity. Additionally, HA specifically binds to certain receptors that are over-expressed in cancer cells. To maximize the effect of drug delivery and cancer treatment, diverse types of nanomaterials have been developed. HA-based nanomaterials, including micelles, polymersomes, hydrogels, and nanoparticles, play a critical role in efficient drug delivery and cancer treatment. Hyperthermic cancer treatment using HA-based nanomaterials has attracted attention as an efficient cancer treatment approach. In this paper, the biomedical applications of HA-based nanomaterials in hyperthermic cancer treatment and combined therapies are summarized. HA-based nanomaterials may become a representative platform in hyperthermic cancer treatment.

2016 ◽  
Vol 2016 ◽  
pp. 1-14 ◽  
Author(s):  
Anna Jarosz ◽  
Marta Skoda ◽  
Ilona Dudek ◽  
Dariusz Szukiewicz

Due to the development of nanotechnology graphene and graphene-based nanomaterials have attracted the most attention owing to their unique physical, chemical, and mechanical properties. Graphene can be applied in many fields among which biomedical applications especially diagnostics, cancer therapy, and drug delivery have been arousing a lot of interest. Therefore it is essential to understand better the graphene-cell interactions, especially toxicity and underlying mechanisms for proper use and development. This review presents the recent knowledge concerning graphene cytotoxicity and influence on different cancer cell lines.


2017 ◽  
Vol 5 (33) ◽  
pp. 6835-6846 ◽  
Author(s):  
Liang Song ◽  
Zhou Pan ◽  
Huabing Zhang ◽  
Yanxiu Li ◽  
Yinying Zhang ◽  
...  

Self-assembled methotrexate-hyaluronic acid-octadecylamine nanoparticles loaded with curcumin have dual-targeting and combinational anticancer effect to folate and CD44 receptors overexpressed cancer cells.


RSC Advances ◽  
2021 ◽  
Vol 11 (16) ◽  
pp. 9076-9085
Author(s):  
Kanchan Yadav ◽  
Megha Das ◽  
Nurul Hassan ◽  
Archana Mishra ◽  
Jayeeta Lahiri ◽  
...  

A novel nanodot-using protein has been synthesized for the live cell imaging and drug delivery of melatonin in breast cancer cells. Its unique properties hold potential for various biomedical applications in the field of bioimaging and drug delivery.


2020 ◽  
Vol 10 (4) ◽  
pp. 222
Author(s):  
Loredana G. Marcu

Personalised treatment in oncology has seen great developments over the last decade, due to both technological advances and more in-depth knowledge of radiobiological processes occurring in tumours. Lung cancer therapy is no exception, as new molecular targets have been identified to further increase treatment specificity and sensitivity. Yet, tumour resistance to treatment is still one of the main reasons for treatment failure. This is due to a number of factors, among which tumour proliferation, the presence of cancer stem cells and the metastatic potential of the primary tumour are key features that require better controlling to further improve cancer management in general, and lung cancer treatment in particular. Imaging biomarkers play a key role in the identification of biological particularities within tumours and therefore are an important component of treatment personalisation in radiotherapy. Imaging techniques such as PET, SPECT, MRI that employ tumour-specific biomarkers already play a critical role in patient stratification towards individualized treatment. The aim of the current paper is to describe the radiobiological challenges of lung cancer treatment in relation to the latest imaging biomarkers that can aid in the identification of hostile cellular features for further treatment adaptation and tailoring to the individual patient’s needs.


2012 ◽  
Vol 2012 ◽  
pp. 1-11 ◽  
Author(s):  
Dan G. Duda

Antiangiogenic therapy for cancer has gone from an intriguing hypothesis in the 1970s to an accepted treatment approach for many cancer types. It has also become a standard of care for certain eye diseases. Yet, despite the use of molecularly targeted drugs with well defined targets, to date there are no biomarkers to guide the use of antiangiogenic therapy in patients. The mechanisms of action of these drugs are also being debated. This paper discusses some of the emerging biomarker candidates for this type of cancer therapy, which have provided mechanistic insight and might be useful in the future for optimizing cancer treatment.


Pharmaceutics ◽  
2019 ◽  
Vol 11 (7) ◽  
pp. 301 ◽  
Author(s):  
Kim ◽  
Choi ◽  
Choi ◽  
Park ◽  
Ryu

Hyaluronic acid (HA) has been widely investigated in cancer therapy due to its excellent characteristics. HA, which is a linear anionic polymer, has biocompatibility, biodegradability, non-immunogenicity, non-inflammatory, and non-toxicity properties. Various HA nanomedicines (i.e., micelles, nanogels, and nanoparticles) can be prepared easily using assembly and modification of its functional groups such as carboxy, hydroxy and N-acetyl groups. Nanometer-sized HA nanomedicines can selectively deliver drugs or other molecules into tumor sites via their enhanced permeability and retention (EPR) effect. In addition, HA can interact with overexpressed receptors in cancer cells such as cluster determinant 44 (CD44) and receptor for HA-mediated motility (RHAMM) and be degraded by a family of enzymes called hyaluronidase (HAdase) to release drugs or molecules. By interaction with receptors or degradation by enzymes inside cancer cells, HA nanomedicines allow enhanced targeting cancer therapy. In this article, recent studies about HA nanomedicines in drug delivery systems, photothermal therapy, photodynamic therapy, diagnostics (because of the high biocompatibility), colloidal stability, and cancer targeting are reviewed for strategies using micelles, nanogels, and inorganic nanoparticles.


Vaccines ◽  
2021 ◽  
Vol 9 (8) ◽  
pp. 830
Author(s):  
Erum Shoeb ◽  
Uzma Badar ◽  
Srividhya Venkataraman ◽  
Kathleen Hefferon

Naturally occurring viral nanomaterials have gained popularity owing to their biocompatible and biodegradable nature. Plant virus nanoparticles (VNPs) can be used as nanocarriers for a number of biomedical applications. Plant VNPs are inexpensive to produce, safe to administer and efficacious as treatments. The following review describes how plant virus architecture facilitates the use of VNPs for imaging and a variety of therapeutic applications, with particular emphasis on cancer. Examples of plant viruses which have been engineered to carry drugs and diagnostic agents for specific types of cancer are provided. The drug delivery system in response to the internal conditions is known as stimuli response, recently becoming more applicable using plant viruses based VNPs. The review concludes with a perspective of the future of plant VNPs and plant virus-like particles (VLPs) in cancer research and therapy.


Sign in / Sign up

Export Citation Format

Share Document