scholarly journals Active Cellular and Subcellular Targeting of Nanoparticles for Drug Delivery

Pharmaceutics ◽  
2019 ◽  
Vol 11 (10) ◽  
pp. 543 ◽  
Author(s):  
Okhil K. Nag ◽  
James B. Delehanty

Nanoparticle (NP)-mediated drug delivery (NMDD) for active targeting of diseases is a primary goal of nanomedicine. NPs have much to offer in overcoming the limitations of traditional drug delivery approaches, including off-target drug toxicity and the need for the administration of repetitive doses. In the last decade, one of the main foci in NMDD has been the realization of NP-mediated drug formulations for active targeted delivery to diseased tissues, with an emphasis on cellular and subcellular targeting. Advances on this front have included the intricate design of targeted NP-drug constructs to navigate through biological barriers, overcome multidrug resistance (MDR), decrease side effects, and improve overall drug efficacy. In this review, we survey advancements in NP-mediated drug targeting over the last five years, highlighting how various NP-drug constructs have been designed to achieve active targeted delivery and improved therapeutic outcomes for critical diseases including cancer, rheumatoid arthritis, and Alzheimer’s disease. We conclude with a survey of the current clinical trial landscape for active targeted NP-drug delivery and how we envision this field will progress in the near future.

Molecules ◽  
2020 ◽  
Vol 25 (24) ◽  
pp. 5952
Author(s):  
Bwalya A. Witika ◽  
Pedzisai A. Makoni ◽  
Larry L. Mweetwa ◽  
Pascal V. Ntemi ◽  
Melissa T. R. Chikukwa ◽  
...  

The current COVID-19 pandemic has tested the resolve of the global community with more than 35 million infections worldwide and numbers increasing with no cure or vaccine available to date. Nanomedicines have an advantage of providing enhanced permeability and retention and have been extensively studied as targeted drug delivery strategies for the treatment of different disease. The role of monocytes, erythrocytes, thrombocytes, and macrophages in diseases, including infectious and inflammatory diseases, cancer, and atherosclerosis, are better understood and have resulted in improved strategies for targeting and in some instances mimicking these cell types to improve therapeutic outcomes. Consequently, these primary cell types can be exploited for the purposes of serving as a “Trojan horse” for targeted delivery to identified organs and sites of inflammation. State of the art and potential utilization of nanocarriers such as nanospheres/nanocapsules, nanocrystals, liposomes, solid lipid nanoparticles/nano-structured lipid carriers, dendrimers, and nanosponges for biomimicry and/or targeted delivery of bioactives to cells are reported herein and their potential use in the treatment of COVID-19 infections discussed. Physicochemical properties, viz., hydrophilicity, particle shape, surface charge, composition, concentration, the use of different target-specific ligands on the surface of carriers, and the impact on carrier efficacy and specificity are also discussed.


2018 ◽  
Vol 18 (8) ◽  
pp. 792-806 ◽  
Author(s):  
Urvashi Aggarwal ◽  
Amit Kumar Goyal ◽  
Goutam Rath

Cervical cancer is the second most common cancer in women. Standard treatment options available for cervical cancer include chemotherapy, surgery and radiation therapy associated with their own side effects and toxicities. Tumor-targeted delivery of anticancer drugs is perhaps one of the most appropriate strategies to achieve optimal outcomes from the treatment and improve the quality of life. Recently nanocarriers based drug delivery systems owing to their unique properties have been extensively investigated for anticancer drug delivery. In addition to that addressing the anatomical significance of cervical cancer, various local drug delivery strategies for the cancer treatment are introduced like: gels, nanoparticles, polymeric films, rods and wafers, lipid based nanocarrier. Localized drug delivery systems allow passive drug targeting results in high drug concentration at the target site. Further they can be tailor made to achieve both sustained and controlled release behavior, substantially improving therapeutic outcomes and minimizing side effects. This review summarizes the meaningful advances in drug delivery strategies to treat cervical cancer.


Author(s):  
Xiaoliang Wang ◽  
Hongchen Gu ◽  
Xinyuan Zhu

Target drug delivery is one of the core issues in modern medicine. Although both thermo-sensitive and magnetic drug vehicles have been developed for this purpose, reliable drug targeting is yet to achieve, because it’s hard to control local temperature in body for thermo-sensitive drugs, and it’s also difficult to control the colloidal sizes of magnetic vehicles to meet the requirements for both long-time circulation and magnetic responsibility. Here we present a new technology to solve these two problems. The drug (taxel) was combined with hyper-branched thermo-sensitive polymer and magnetic nanoparticles. Magnetic responsibility of the complex can be remotely controlled by applying an alternating magnetic field. The untreated complexes were stable in dispersion, while after exposing to the alternating magnetic filed for 5 minutes, the complexes were destabilized and deposited from dispersion quickly. Unlike the commonly used water bath, the technology present here can heat up the drug vehicles remotely from outside, which must have great potentials in the applications of magnetic or thermo-sensitive drug delivery.


2012 ◽  
Vol 2 (3) ◽  
pp. 307-324 ◽  
Author(s):  
Jie Liu ◽  
Warren D. Gray ◽  
Michael E. Davis ◽  
Ying Luo

Dendrimers comprise a category of branched materials with diverse functions that can be constructed with defined architectural and chemical structures. When decorated with bioactive ligands made of peptides and saccharides through peripheral chemical groups, dendrimer conjugates are turned into nanomaterials possessing attractive binding properties with the cognate receptors. At the cellular level, bioactive dendrimer conjugates can interact with cells with avidity and selectivity, and this function has particularly stimulated interests in investigating the targeting potential of dendrimer materials for the design of drug delivery systems. In addition, bioactive dendrimer conjugates have so far been studied for their versatile capabilities to enhance stability, solubility and absorption of various types of therapeutics. This review presents a brief discussion on three aspects of the recent studies to use peptide- and saccharide-conjugated dendrimers for drug delivery: (i) synthesis methods, (ii) cell- and tissue-targeting properties and (iii) applications of conjugated dendrimers in drug delivery nanodevices. With more studies to elucidate the structure–function relationship of ligand–dendrimer conjugates in transporting drugs, the conjugated dendrimers hold promise to facilitate targeted delivery and improve drug efficacy for discovery and development of modern pharmaceutics.


Author(s):  
Tanima Bhattacharya ◽  
Samka Peregrine Maishu ◽  
Rokeya Akter ◽  
Md. Habibur Rahman ◽  
Muhammad Furqan Akhtar ◽  
...  

: Cancer notably carcinoma represents a prominent health challenge worldwide. A variety of chemotherapeutic agents are being used to deal with a variety of carcinomas. However, these delivering agents not only enter the targeted site but also affect normal tissues yielding poor therapeutic outcomes. Chemotherapeutic-associated problems are been attributed to drug non-specificity resulting from poor drug delivery systems. These problems are now been solved using nanomedicine which entails using nanoparticles as drug delivery systems or nanocarriers. This nanoparticle-based drug delivery system enhances clinical outcomes by enabling targeted delivery, improving drug internalization, enhanced permeability, easy biodistribution, prolonged circulation and enhanced permeability rate thereby improving therapeutic effectiveness of several anticancer agents. Natural protein-based nanoparticles (PNPs) such as ferritin, lipoprotein, and lectins from natural sources have gained extensive importance at scientific community level as nanovehicle for effective drug delivery and photo acoustic labeling replacing several synthetic nanocarriers that have shown limited therapeutic outcomes. The bioavailability of PNP, chance of genetic engineering techniques to modify their biological properties made them one of the important raw material sources for drug delivery research. This current review highlighted different chemotherapeutic agents used in the treatment of some carcinomas. It also focused on the wide variety of natural protein sources derived nanoparticles (NPs) as anticancer delivery of agents for cancer therapy.


2019 ◽  
Vol 7 (3) ◽  
pp. 220-233 ◽  
Author(s):  
Shrestha Sharma ◽  
Md. Noushad Javed ◽  
Faheem Hyder Pottoo ◽  
Syed Arman Rabbani ◽  
Md. Abul Barkat ◽  
...  

The traditional drug delivery techniques are unresponsive to the altering metabolic states of the body and fail to achieve target specific drug delivery, which results in toxic plasma concentrations. In order to harmonize the drug release profiles, diverse biological and pathological pathways and factors involved have been studied and consequently, nanomaterials and nanostructures are engineered in a manner so that they respond and interact with the target cells and tissues in a controlled manner to induce promising pharmacological responses with least undesirable effects. The bioinspired nanoparticles such as carbon nanotubes, metallic nanoparticles, and quantum dots sense the localized host environment for diagnosis and treatment of pathological states. These biocompatible polymeric- based nanostructures bind drugs to the specific receptors, which renders them as ideal vehicles for the delivery of drugs and gene. The ultimate goal of bioinspired nanocomposites is to achieve personalized diagnostic and therapeutic outcomes. This review briefly discussed current trends; role, recent advancements as well as different approaches, which are being used for designing and fabrication of some bioinspired nanocarriers.


2021 ◽  
Vol 17 ◽  
Author(s):  
Manisha Lalan ◽  
Maanika Menon ◽  
Pranav Shah

: Stimuli-triggered nanovectors for drug delivery enhance the clinical efficacy and decrease the toxicity by specifically conveying the drugs to the site of target with higher specificity and efficiency. Several stimuli have been regarded, but light as an exogenous stimulus renders several benefits in clinical usage, like elevated spatial and temporal control. A number of photochemical mechanisms have been exploited in the design of photo triggered nanocarriers for biomedical applications. Light in conjugation with photosensitizers or imaging agents in nanovectors can help ensure precise diagnosis, drug delivery and improve therapeutic outcomes. Nanomedicine plays a key role in enhancing therapeutic efficacy and limiting the adverse effects. The review evaluates the multiple nanocarriers such as liposomes, polymersomes, micelles, nanogels etc., which have leveraged the advantages of phototargeting via photothermal, photochemical, photo isomerization and upconversion based activation strategies for efficient drug targeting to intracellular and other regions. An overview of the significant benefits and constraints, and the latest developments in the most popular and recent photoresponsive drug delivery methods is provided to critically judge the prospectives for success and limitations and delve upon the possible future perspectives in the field.


2021 ◽  
Vol 28 ◽  
Author(s):  
Fernando García-Álvarez ◽  
Marcos Martínez-García

: Drug delivery systems are technologies designed for the targeted delivery and controlled release of medicinal agents. Among the materials employed as drug delivery systems, dendrimers have gained increasing interest in recent years because of their properties and structural characteristics. The use of dendrimer-nanocarrier formulations enhances the safety and bioavailability, increases the solubility in water, improves stability and pharmacokinetic profile, and enables efficient delivery of the target drug to a specific site. However, the synthesis of dendritic architectures through convergent or divergent methods has drawbacks and limitations that disrupt aspects related to design and construction and consequently slow down the transfer from academia to industry. In that sense, the implementation of click chemistry has been received increasing attention in the last years, because offers new efficient approaches to obtain dendritic species in good yields and higher monodispersity. This review focuses on recent strategies for building dendrimer drug delivery systems using click reactions from 2015 to early 2021. The dendritic structures showed in this review are based on β-cyclodextrins (β-CD), poly(amidoamine) (PAMAM), dendritic poly (lysine) (PLLD), dimethylolpropionic acid (bis-MPA), phosphoramidate (PAD), and poly(propargyl alcohol-4-mercaptobutyric (PPMA).


Author(s):  
G D Chandrethiya ◽  
P K Shelat ◽  
M N Zaveri

PEGylated gelatin nanoparticles loaded with colchicine were prepared by ethanol precipitation method. Poly-(ethylene glycol)-5000-monomethylether (MPEG 5000), a hydrophilic polymer, was used to pegylate gelatin.  Gluteraldehyde was used as cross-linking agent. To obtain a high quality product, major formulation parameters were optimized.  Spherical particles with mean particles of 193 nm were measured by a Malvern particle size analyzer. Entrapment efficiency was found to be 71.7 ± 1.4% and determined with reverse phase high performance liquid charomatography (RP-HPLC). The in vitro drug release study was performed by dialysis bag method for a period of 168 hours. Lyophilizaton study showed sucrose at lower concentrations proved the best cryoprotectant for this formulation.  Stability study revealed that lyophilized nanoparticles were equally effective (p < 0.05) after one year of storage at 2-8°C with ambient humidity. In vitro antitumoral activity was accessed using the MCF-7 cell line by MTT assay.  The IC50 value was found to be 0.034 μg/ml for the prepared formulation. The results indicate that PEGylated gelatin nanoparticles could be utilized as a potential drug delivery for targeted drug delivery of tumors.  


Author(s):  
Neeraj Mishra ◽  
Tejinder Singh ◽  
Nidhi ◽  
Supandeep Singh Hallan ◽  
Veerpal Kaur

Breast cancer left overs one of the greatest common metastasis disease in females. Advanced diagnostic devices and better understanding of tumour biology can extend the better therapeutic outcomes. Nanotechnology is a tool that helps in cancer diagnosis and treatment therapy. Many nanocarriers such as solid lipid nanoparticles, magnetic nanoparticles, nanocrystals, nanogels, nano-lipid nanocarriers, biodegradable nanoparticles, liposomes, and dendrimers are introduced to improve the therapeutic efficacy of antineoplastic agents. Surface modified target drug delivery system has the potential to increase the therapeutic effects and also reduce the cytotoxicity of breast cancer. Different approaches have been explored for treatment of breast cancer. This review describes the recent advances in the development of nanocarriers used for the targeted treatment of breast cancer. It also focuses on etiology, risk factor and conventional therapy of breast cancer. KEYWORDS: Breast Cancer; Nano-carriers; Tumor Targeting; Ligands; Receptor.


Sign in / Sign up

Export Citation Format

Share Document