scholarly journals Manufacturing and Examination of Vaginal Drug Delivery System by FDM 3D Printing

Pharmaceutics ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 1714
Author(s):  
Petra Arany ◽  
Ildikó Papp ◽  
Marianna Zichar ◽  
Géza Regdon ◽  
Mónika Béres ◽  
...  

Vaginal drug delivery systems can provide a long-term and constant liberation of the active pharmaceutical ingredient even for months. For our experiment, FDM 3D printing was used to manufacture the vaginal ring samples from thermoplastic polyurethane filament, which enables fast manufacturing of complex, personalized medications. 3D printing can be an excellent alternative instead of industrial manufacturing, which is complicated and time-consuming. In our work, the 3D printed vaginal rings were filled manually with jellified metronidazole or chloramphenicol for the treatment of bacterial vaginosis. The need for manual filling was certified by the thermogravimetric and heatflow assay results. The manufactured samples were analyzed by an Erweka USP type II Dissolution Apparatus, and the dissolution profile can be distinguished based on the applied jellifying agents and the API’s. All samples were considered non-similar based on the pairwise comparison. The biocompatibility properties were determined by prolonged MTT assay on HeLa cells, and the polymer could be considered non-toxic. Based on the microbiological assay on E. coli metronidazole and chitosan containing samples had bactericidal effects while just metronidazole or just chitosan containing samples bacteriostatic effect. None of these samples showed a fungistatic or fungicide effect against C. albicans. Based on our results, we successfully manufactured 3D printed vaginal rings filled with jellified metronidazole.

Author(s):  
Michael A. Luzuriaga ◽  
Danielle R. Berry ◽  
John C. Reagan ◽  
Ronald A. Smaldone ◽  
Jeremiah J. Gassensmith

Biodegradable polymer microneedle (MN) arrays are an emerging class of transdermal drug delivery devices that promise a painless and sanitary alternative to syringes; however, prototyping bespoke needle architectures is expensive and requires production of new master templates. Here, we present a new microfabrication technique for MNs using fused deposition modeling (FDM) 3D printing using polylactic acid, an FDA approved, renewable, biodegradable, thermoplastic material. We show how this natural degradability can be exploited to overcome a key challenge of FDM 3D printing, in particular the low resolution of these printers. We improved the feature size of the printed parts significantly by developing a post fabrication chemical etching protocol, which allowed us to access tip sizes as small as 1 μm. With 3D modeling software, various MN shapes were designed and printed rapidly with custom needle density, length, and shape. Scanning electron microscopy confirmed that our method resulted in needle tip sizes in the range of 1 – 55 µm, which could successfully penetrate and break off into porcine skin. We have also shown that these MNs have comparable mechanical strengths to currently fabricated MNs and we further demonstrated how the swellability of PLA can be exploited to load small molecule drugs and how its degradability in skin can release those small molecules over time.


2021 ◽  
Vol 11 (4) ◽  
pp. 70-79
Author(s):  
Dino Dominic Forte Ligutan ◽  
Argel Alejandro Bandala ◽  
Jason Limon Española ◽  
Richard Josiah Calayag Tan Ai ◽  
Ryan Rhay Ponce Vicerra ◽  
...  

The development of a novel 3D-printed three-claw robotic gripper shall be described in this paper with the goal of incorporating various design considerations. Such considerations include the grip reliability and stability, grip force maximization, wide object grasping capability. Modularization of its components is another consideration that allows its parts to be easily machined and reusable. The design was realized by 3D printing using a combination of tough polylactic acid (PLA) material and thermoplastic polyurethane (TPU) material. In practice, additional tolerances were also considered for 3D printing of materials to compensate for possible expansion or shrinkage of the materials used to achieve the required functionality. The aim of the study is to explore the design and eventually deploy the three-claw robotic gripper to an actual robotic arm once its metal work fabrication is finished.


Polymers ◽  
2019 ◽  
Vol 11 (12) ◽  
pp. 2034 ◽  
Author(s):  
Tomasz Kozior ◽  
Al Mamun ◽  
Marah Trabelsi ◽  
Martin Wortmann ◽  
Sabantina Lilia ◽  
...  

Electrospinning is a frequently used method to prepare air and water filters. Electrospun nanofiber mats can have very small pores, allowing for filtering of even the smallest particles or molecules. In addition, their high surface-to-volume ratio allows for the integration of materials which may additionally treat the filtered material through photo-degradation, possess antimicrobial properties, etc., thus enhancing their applicability. However, the fine nanofiber mats are prone to mechanical damage. Possible solutions include reinforcement by embedding them in composites or gluing them onto layers that are more mechanically stable. In a previous study, we showed that it is generally possible to stabilize electrospun nanofiber mats by 3D printing rigid polymer layers onto them. Since this procedure is not technically easy and needs some experience to avoid delamination as well as damaging the nanofiber mat by the hot nozzle, here we report on the reversed technique (i.e., first 3D printing a rigid scaffold and subsequently electrospinning the nanofiber mat on top of it). We show that, although the adhesion between both materials is insufficient in the case of a common rigid printing polymer, nanofiber mats show strong adhesion to 3D printed scaffolds from thermoplastic polyurethane (TPU). This paves the way to a second approach of combining 3D printing and electrospinning in order to prepare mechanically stable filters with a nanofibrous surface.


Micromachines ◽  
2019 ◽  
Vol 10 (1) ◽  
pp. 46 ◽  
Author(s):  
Claudio Manganiello ◽  
David Naso ◽  
Francesco Cupertino ◽  
Orazio Fiume ◽  
Gianluca Percoco

The present research aims to exploit commercially available materials and machines to fabricate multilayer, topologically designed transducers, which can be embedded into mechanical devices, such as soft or rigid grippers. Preliminary tests on the possibility of fabricating 3D-printed transducers using a commercial conductive elastomeric filament, carbon black-filled thermoplastic polyurethane, are presented. The commercial carbon-filled thermoplastic polyurethane (TPU), analyzed in the present paper, has proven to be a candidate material for the production of 3D printed displacement sensors. Some limitations in fabricating the transducers from a 2.85 mm filament were found, and comparisons with 1.75 mm filaments should be conducted. Moreover, further research on the low repeatability at low displacements and the higher performance of the hollow structure, in terms of repeatability, must be carried out. To propose an approach that can very easily be reproduced, only commercial filaments are used.


2019 ◽  
Vol 24 (42) ◽  
pp. 5039-5048 ◽  
Author(s):  
Sabna Kotta ◽  
Anroop Nair ◽  
Nimer Alsabeelah

Background: 3D printing technology is a new chapter in pharmaceutical manufacturing and has gained vast interest in the recent past as it offers significant advantages over traditional pharmaceutical processes. Advances in technologies can lead to the design of suitable 3D printing device capable of producing formulations with intended drug release. Methods: This review summarizes the applications of 3D printing technology in various drug delivery systems. The applications are well arranged in different sections like uses in personalized drug dosing, complex drugrelease profiles, personalized topical treatment devices, novel dosage forms and drug delivery devices and 3D printed polypills. Results: This niche technology seems to be a transformative tool with more flexibility in pharmaceutical manufacturing. Typically, 3D printing is a layer-by-layer process having the ability to fabricate 3D formulations by depositing the product components by digital control. This additive manufacturing process can provide tailored and individualized dosing for treatment of patients different backgrounds with varied customs and metabolism pattern. In addition, this printing technology has the capacity for dispensing low volumes with accuracy along with accurate spatial control for customized drug delivery. After the FDA approval of first 3D printed tablet Spritam, the 3D printing technology is extensively explored in the arena of drug delivery. Conclusion: There is enormous scope for this promising technology in designing various delivery systems and provides customized patient-compatible formulations with polypills. The future of this technology will rely on its prospective to provide 3D printing systems capable of manufacturing personalized doses. In nutshell, the 3D approach is likely to revolutionize drug delivery systems to a new level, though need time to evolve.


2021 ◽  
Vol 11 (5-S) ◽  
pp. 131-137
Author(s):  
Ahmar Khan ◽  
Mir Javid Iqbal ◽  
Saima Amin ◽  
Humaira Bilal ◽  
, Bilquees ◽  
...  

With the approval of first 3D printed drug “spritam” by USFDA, 3D printing is gaining acceptance in healthcare, engineering and other aspects of life. Taking 3D printing towards the next step gives birth to what is referred to as “4D printing”. The full credit behind the unveiling of 4D printing technology in front of the world goes to Massachusetts Institute of Technology (MIT), who revealed “time” in this technology as the fourth dimension.  4D printing is a renovation of 3D printing wherein special materials (referred to as smart materials) are incorporated which change their morphology post printing in response to a stimulus. Depending upon the applicability of this technology, there may be a variety of stimuli, most common among them being pH, water, heat, wind and other forms of energy.  The upper hand of 4D printing over 3D printing is that 3D printed structures are generally immobile, rigid and inanimate whereas 4D printed structures are flexible, mobile and able to interact with the surrounding environment based on the stimulus. This capability of 4D printing to transform 3D structures into smart structures in response to various stimuli promises a great potential for biomedical and bioengineering applications. The potential of 4D printing in developing pre-programmed biomaterials that can undergo transformations lays new foundations for enabling smart pharmacology, personalized medicine, and smart drug delivery, all of which can help in combating diseases in a smarter way. Hence, the theme of this paper is about the potential of 4D printing in creating smart drug delivery, smart pharmacology, targeted drug delivery and better patient compliance. The paper highlights the recent advancements of 4D printing in healthcare sector and ways by which 4D printing is doing wonders in creating smart drug delivery and tailored medicine. The major constraints in the approach have also been highlighted. Keywords: 4D printing, smart, drug delivery system, patient compliance, biomaterials, tailored medicine


Author(s):  
Steffi Torres ◽  
Julio San Martin ◽  
Brittany Newell ◽  
Jose Garcia

Abstract Flexible actuators are a growing class of devices implemented in soft robotic applications, medical devices and processes involving food and pharmaceutical products. Such actuators have traditionally been manufactured using casting processes or other conventional methods requiring more than one fabrication step. The arrival of flexible 3D printing materials and 3D printing techniques has facilitated the creation of these flexible actuators via additive manufacturing. The work presented in this article displays the analytical characterization and experimental validation of two materials and two actuator designs. The first case presents a finite element analysis (FEA) simulated model of a bellows actuator using a photocurable flexible resin (TangoPlus FLX930) and studies the effect of printing orientation on the simulation. The simulation used a 5 parameter Mooney-Rivlin model to predict the strain behavior of the actuator under hydrostatic pressure. A second case is presented where a Thermoplastic Polyurethane actuator was 3D printed and simulated using the same FEA model and a second calibration of the Mooney-Rivlin 5 parameter model. In both cases experimental data was used to calibrate and validate the simulation. The resulting simulated strain was consistent when the printing orientation of actuators was parallel (0 degrees) to the strain direction of the actuators. Results were less consistent when a print orientation of 45 degrees was applied.


Materials ◽  
2020 ◽  
Vol 13 (15) ◽  
pp. 3364
Author(s):  
Bahaa Shaqour ◽  
Inés Reigada ◽  
Żaneta Górecka ◽  
Emilia Choińska ◽  
Bart Verleije ◽  
...  

Additive manufacturing technologies have been widely used in the medical field. More specifically, fused filament fabrication (FFF) 3D-printing technology has been thoroughly investigated to produce drug delivery systems. Recently, few researchers have explored the possibility of directly 3D printing such systems without the need for producing a filament which is usually the feedstock material for the printer. This was possible via direct feeding of a mixture consisting of the carrier polymer and the required drug. However, as this direct feeding approach shows limited homogenizing abilities, it is vital to investigate the effect of the pre-mixing step on the quality of the 3D printed products. Our study investigates the two commonly used mixing approaches—solvent casting and powder mixing. For this purpose, polycaprolactone (PCL) was used as the main polymer under investigation and gentamicin sulfate (GS) was selected as a reference. The produced systems’ efficacy was investigated for bacterial and biofilm prevention. Our data show that the solvent casting approach offers improved drug distribution within the polymeric matrix, as was observed from micro-computed topography and scanning electron microscopy visualization. Moreover, this approach shows a higher drug release rate and thus improved antibacterial efficacy. However, there were no differences among the tested approaches in terms of thermal and mechanical properties.


2019 ◽  
Vol 24 (42) ◽  
pp. 5029-5038 ◽  
Author(s):  
Md. Shoaib Alam ◽  
Ayesha Akhtar ◽  
Iftikhar Ahsan ◽  
Sheikh Shafiq-un-Nabi

Background: 3D printed pharmaceutical products are revolutionizing the pharmaceutical industry as a prospective mean to achieve a personalized method of treatments acquired to the specially designed need of each patient. It will depend upon age, weight, concomitants, pharmacogenetics and pharmacokinetic profile of the patient and thus transforming the current pharmaceutical market as a potential alternative to conventional medicine. 3D printing technology is getting more consideration in new medicine formulation development as a modern and better alternative to control many challenges associated with conventional medicinal products. There are many advantages of 3D printed medicines which create tremendous opportunities for improving the acceptance, accuracy and effectiveness of these medicines. In 2015, United State Food and Drug Administration has approved the first 3D printed tablet (Spritam®) and had shown the emerging importance of this technology. Methods: This review article summarizes as how in-depth knowledge of drugs and their manufacturing processes can assist to manage different strategies for various 3D printing methods. The principal goal of this review is to provide a brief introduction about the present techniques employed in tech -medicine evolution from conventional to a novel drug delivery system. Results: It is evidenced that through its unparalleled advantages of high-throughput, versatility, automation, precise spatial control and fabrication of hierarchical structures, the implementation of 3D printing for the expansion and delivery of controlled drugs acts as a pivotal role. Conclusion: 3D printing technology has an extraordinary ability to provide elasticity in the manufacturing and designing of composite products that can be utilized in programmable and personalized medicine. Personalized medicine helps in improving drug safety and minimizes side effects such as toxicity to individual human being which is associated with unsuitable drug dose.


Polymers ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 305
Author(s):  
Linda Ritzen ◽  
Vincenzo Montano ◽  
Santiago J. Garcia

The use of self-healing (SH) polymers to make 3D-printed polymeric parts offers the potential to increase the quality of 3D-printed parts and to increase their durability and damage tolerance due to their (on-demand) dynamic nature. Nevertheless, 3D-printing of such dynamic polymers is not a straightforward process due to their polymer architecture and rheological complexity and the limited quantities produced at lab-scale. This limits the exploration of the full potential of self-healing polymers. In this paper, we present the complete process for fused deposition modelling of a room temperature self-healing polyurethane. Starting from the synthesis and polymer slab manufacturing, we processed the polymer into a continuous filament and 3D printed parts. For the characterization of the 3D printed parts, we used a compression cut test, which proved useful when limited amount of material is available. The test was able to quasi-quantitatively assess both bulk and 3D printed samples and their self-healing behavior. The mechanical and healing behavior of the 3D printed self-healing polyurethane was highly similar to that of the bulk SH polymer. This indicates that the self-healing property of the polymer was retained even after multiple processing steps and printing. Compared to a commercial 3D-printing thermoplastic polyurethane, the self-healing polymer displayed a smaller mechanical dependency on the printing conditions with the added value of healing cuts at room temperature.


Sign in / Sign up

Export Citation Format

Share Document