scholarly journals Skin Substitute Preparation Method Induces Immunomodulatory Changes in Co-Incubated Cells through Collagen Modification

Pharmaceutics ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 2164
Author(s):  
Jordan Holl ◽  
Cezary Pawlukianiec ◽  
Javier Corton Ruiz ◽  
Dawid Groth ◽  
Kamil Grubczak ◽  
...  

Chronic ulcerative and hard-healing wounds are a growing global concern. Skin substitutes, including acellular dermal matrices (ADMs), have shown beneficial effects in healing processes. Presently, the vast majority of currently available ADMs are processed from xenobiotic or cadaveric skin. Here we propose a novel strategy for ADM preparation from human abdominoplasty-derived skin. Skin was processed using three different methods of decellularization involving the use of ionic detergent (sodium dodecyl sulfate; SDS, in hADM 1), non-ionic detergent (Triton X-100 in hADM 2), and a combination of recombinant trypsin and Triton X-100 (in hADM 3). We next evaluated the immunogenicity and immunomodulatory properties of this novel hADM by using an in vitro model of peripheral blood mononuclear cell culture, flow cytometry, and cytokine assays. We found that similarly sourced but differentially processed hADMs possess distinct immunogenicity. hADM 1 showed no immunogenic effects as evidenced by low T cell proliferation and no significant change in cytokine profile. In contrast, hADMs 2 and 3 showed relatively higher immunogenicity. Moreover, our novel hADMs exerted no effect on T cell composition after three-day of coincubation. However, we observed significant changes in the composition of monocytes, indicating their maturation toward a phenotype possessing anti-inflammatory and pro-angiogenic properties. Taken together, we showed here that abdominoplasty skin is suitable for hADM manufacturing. More importantly, the use of SDS-based protocols for the purposes of dermal matrix decellularization allows for the preparation of non-immunogenic scaffolds with high therapeutic potential. Despite these encouraging results, further studies are needed to evaluate the beneficial effects of our hADM 1 on deep and hard-healing wounds.

Nutrients ◽  
2019 ◽  
Vol 11 (4) ◽  
pp. 788 ◽  
Author(s):  
Despoina Kiousi ◽  
Athanasios Karapetsas ◽  
Kyriaki Karolidou ◽  
Mihalis Panayiotidis ◽  
Aglaia Pappa ◽  
...  

Probiotics are defined as live microorganisms that when administered in adequate amounts confer a health benefit to the host. Their positive supplementation outcomes on several gastrointestinal disorders are well defined. Nevertheless, their actions are not limited to the gut, but may also impart their beneficial effects at distant sites and organs. In this regard, in this review article we: (i) comprehensively describe the main mechanisms of action of probiotics at distant sites, including bones, skin, and brain; (ii) critically present their therapeutic potential against bone, skin, and neuronal diseases (e.g., osteoporosis, non-healing wounds and autoimmune skin illnesses, mood, behavior, memory, and cognitive impairments); (iii) address the current gaps in the preclinical and clinical research; and (iv) indicate new research directions and suggest future investigations.


1985 ◽  
Vol 40 (11-12) ◽  
pp. 798-805 ◽  
Author(s):  
Jan Pałyga

Abstract Normal and starved adult chickens were injected intraperitoneally with ᴅ-galactosamine hydro­ chloride (0.5 g/kg body weight) and 6 h later liver chromatin acid-soluble proteins were isolated. These proteins were resolved by a two-dimensional polyacrylamide gel electrophoresis in the presence of non-ionic detergent, Triton X-100, in the first dimension and anionic detergent, sodium dodecyl sulfate, in the second dimension. Although spotting patterns of acid-soluble chromatin proteins were remarkably similar between normal and starved control birds and those receiving ᴅ-galactosamine, a disappearance of a 24-kDa protein after administration of this agent was found. Moreover, it was shown that this protein was also completely absent in the chicken erythrocyte chromatin which was known to be inactive in RNA synthesis.It seems that the disappearance of the 24-kDa chromatin protein may be associated with inhibiting of transcription in hen liver after ᴅ-galactosamine administration and during hen erythrocyte maturation.


Materials ◽  
2021 ◽  
Vol 14 (17) ◽  
pp. 4785
Author(s):  
Bożena Gzik-Zroska ◽  
Kamil Joszko ◽  
Wojciech Wolański ◽  
Sławomir Suchoń ◽  
Michał Burkacki ◽  
...  

This work aimed to assess the impact of acellularization and sterilization methods on the mechanical properties of biocomposites used as a skin substitute. On the basis of the statistical analysis, it was ascertained that the values of the Young modulus for the samples before the sterilization process—only in the cases of substances such as: trypsin, 15% glycerol and dispase—changed in a statistically significant way. In the case of dispase, the Young modulus value before the sterilization process amounted to 66.6 MPa, for trypsin this value equalled 33.9 MPa, whereas for 15% glycerol it was 11 MPa. In the case of samples after the completion of the sterilization process, the analysis did not show any statistically significant differences between the obtained results of Young’s modulus depending on the respective reagents applied. It was confirmed that different methods of acellularization and the process of sterilization effect the alteration of mechanical properties of allogeneic skins. In the case of the decellularization method using SDS (Sodium Dodecyl Sulfate), liquid nitrogen and 85% glycerol the highest values of strain were observed. In the authors’ opinion, it is the above-mentioned methods that should be recommended in the process of preparation of skin substitutes.


2021 ◽  
Vol 8 (2) ◽  
Author(s):  
YaWen Liu ◽  
Ching-Cheng Huang ◽  
YuanYuan Wang ◽  
Jun Xu ◽  
GuoDing Wang ◽  
...  

Abstract For patients with extensive full-thickness burns who do not have sufficient autologous split-thickness skin for skin grafts, the application of biological skin substitutes may be considered. The aim of this study was to find an optimal new type method for the production of a biovital skin substitute based on acellular dermal matrix (ADM) and preclinical evaluations. In this work, 25 methods of ADM production were assessed. The proposed methods are based on the use of the following enzymes: papain, Carica papaya lipase (CPL), and purification using a polymer/salt aqueous two-phase system. The obtained ADM samples were characterized via scanning electron microscopy (SEM), porosity measurement and water vapor transmission test. Results showed that the collagen bundles of ADM microparticles were intact and orderly. Through differential scanning calorimetry (DSC), thermo gravimetric analysis (TGA) and biocompatibility tests, the results indicated that the proportion of papain and CPL was the same and 5 h processing time are the optimum conditions for ADM preparation and the material showed good biocompatibility. Our results suggested that the potential of developing this kind of decellularization process to manufacture ADM scaffolds for clinical application.


1997 ◽  
Vol 35 (7) ◽  
pp. 123-130 ◽  
Author(s):  
J. C. Liu ◽  
P. S. Chang

The solubility of chlorophenols as affected by surfactant was investigated. Three kinds of surfactant, sodium dodecyl sulfate, Triton X-100, and Brij 35, were utilized. The solubilization of chlorophenols by surfactant follows the order of 2,4,6-trichlorophenol > 2,4-dichlorophenol > 2,6-dichlorophenol > 2-chlorophenol; and the critical micelle concentration is an important index. The adsorption reactions of 2,4-dichlorophenol and 2,4,6- trichlorophenol onto hydrous montmorillonite in the presence of surfactant were examined. The presence of surfactant decreased the adsorption of chlorophenols significantly. The roles of hydrophobicity of chlorophenols in solubilization and adsorption behaviors are discussed.


2020 ◽  
Vol 22 (19) ◽  
pp. 11075-11085
Author(s):  
Mengjian Wu ◽  
Zhaoxia Wu ◽  
Shangwu Ding ◽  
Zhong Chen ◽  
Xiaohong Cui

Different submicellar solubilization mechanisms of two systems, Triton X-100/tetradecane and sodium dodecyl sulfate (SDS)/butyl methacrylate, are revealed on the molecular scale by 1H NMR spectroscopy and 2D diffusion ordered spectroscopy (DOSY).


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Haiyan Zhou ◽  
Xinyi Peng ◽  
Jie Hu ◽  
Liwen Wang ◽  
Hairong Luo ◽  
...  

AbstractAdipose tissue-resident T cells have been recognized as a critical regulator of thermogenesis and energy expenditure, yet the underlying mechanisms remain unclear. Here, we show that high-fat diet (HFD) feeding greatly suppresses the expression of disulfide-bond A oxidoreductase-like protein (DsbA-L), a mitochondria-localized chaperone protein, in adipose-resident T cells, which correlates with reduced T cell mitochondrial function. T cell-specific knockout of DsbA-L enhances diet-induced thermogenesis in brown adipose tissue (BAT) and protects mice from HFD-induced obesity, hepatosteatosis, and insulin resistance. Mechanistically, DsbA-L deficiency in T cells reduces IFN-γ production and activates protein kinase A by reducing phosphodiesterase-4D expression, leading to increased BAT thermogenesis. Taken together, our study uncovers a mechanism by which T cells communicate with brown adipocytes to regulate BAT thermogenesis and whole-body energy homeostasis. Our findings highlight a therapeutic potential of targeting T cells for the treatment of over nutrition-induced obesity and its associated metabolic diseases.


2004 ◽  
Vol 50 (3) ◽  
pp. 828-839 ◽  
Author(s):  
Keigo Setoguchi ◽  
Yoshikata Misaki ◽  
Kimito Kawahata ◽  
Kota Shimada ◽  
Takuo Juji ◽  
...  

Cancers ◽  
2021 ◽  
Vol 13 (14) ◽  
pp. 3578
Author(s):  
Emilie Barsac ◽  
Carolina de Amat Herbozo ◽  
Loïc Gonzalez ◽  
Thomas Baranek ◽  
Thierry Mallevaey ◽  
...  

The vast majority of studies on T cell biology in tumor immunity have focused on peptide-reactive conventional T cells that are restricted to polymorphic major histocompatibility complex molecules. However, emerging evidence indicated that unconventional T cells, including γδ T cells, natural killer T (NKT) cells and mucosal-associated invariant T (MAIT) cells are also involved in tumor immunity. Unconventional T cells span the innate–adaptive continuum and possess the unique ability to rapidly react to nonpeptide antigens via their conserved T cell receptors (TCRs) and/or to activating cytokines to orchestrate many aspects of the immune response. Since unconventional T cell lineages comprise discrete functional subsets, they can mediate both anti- and protumoral activities. Here, we review the current understanding of the functions and regulatory mechanisms of protumoral unconventional T cell subsets in the tumor environment. We also discuss the therapeutic potential of these deleterious subsets in solid cancers and why further feasibility studies are warranted.


Sign in / Sign up

Export Citation Format

Share Document