scholarly journals A Dual Role of Vanadium in Environmental Systems—Beneficial and Detrimental Effects on Terrestrial Plants and Humans

Plants ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 1110
Author(s):  
Ewa Hanus-Fajerska ◽  
Alina Wiszniewska ◽  
Iwona Kamińska

The importance of vanadium (V) in the functioning of land systems is extremely diverse, as this element may exert both positive and harmful effects on terrestrial organisms. It recently become considered an element of beneficial character with a range of applications for human welfare. The health-ameliorative properties of this transition element depend on its degree of oxidation and on optimal concentration in the target cells. It was found that a similar relationship applies to vascular plants. However, excessive amounts of vanadium in the environment contaminate the soil and negatively affect the majority of living organisms. A significantly elevated level of V results in the destabilization of plant physiological balance, slowing down the growth of biomass which significantly reduces yield. In turn, low doses of the appropriate vanadium ions can stimulate plant growth and development, exert cytoprotective effects, and effectively enhance the synthesis of some biologically active compounds. We present the scientific achievements of research teams dealing with such topics. The issues discussed concern the role of vanadium in the environment, particular organisms, and highlight its dualistic influence on plants. Achievements in the field of V bioremediation, with the use of appropriately selected microorganisms and plant species, are emphasized.

2019 ◽  
Vol 20 (19) ◽  
pp. 4813 ◽  
Author(s):  
Sevindzh Kletukhina ◽  
Olga Neustroeva ◽  
Victoria James ◽  
Albert Rizvanov ◽  
Marina Gomzikova

Epithelial–mesenchymal transition (EMT) is a process that takes place during embryonic development, wound healing, and under some pathological processes, including fibrosis and tumor progression. The molecular changes occurring within epithelial cells during transformation to a mesenchymal phenotype have been well studied. However, to date, the mechanism of EMT induction remains to be fully elucidated. Recent findings in the field of intercellular communication have shed new light on this process and indicate the need for further studies into this important mechanism. New evidence supports the hypothesis that intercellular communication between mesenchymal stroma/stem cells (MSCs) and resident epithelial cells plays an important role in EMT induction. Besides direct interactions between cells, indirect paracrine interactions by soluble factors and extracellular vesicles also occur. Extracellular vesicles (EVs) are important mediators of intercellular communication, through the transfer of biologically active molecules, genetic material (mRNA, microRNA, siRNA, DNA), and EMT inducers to the target cells, which are capable of reprogramming recipient cells. In this review, we discuss the role of intercellular communication by EVs to induce EMT and the acquisition of stemness properties by normal and tumor epithelial cells.


2016 ◽  
Vol 113 (31) ◽  
pp. 8765-8770 ◽  
Author(s):  
Erin D. Gordon ◽  
Laura J. Simpson ◽  
Cydney L. Rios ◽  
Lando Ringel ◽  
Marrah E. Lachowicz-Scroggins ◽  
...  

Type 2 inflammation occurs in a large subgroup of asthmatics, and novel cytokine-directed therapies are being developed to treat this population. In mouse models, interleukin-33 (IL-33) activates lung resident innate lymphoid type 2 cells (ILC2s) to initiate airway type 2 inflammation. In human asthma, which is chronic and difficult to model, the role of IL-33 and the target cells responsible for persistent type 2 inflammation remain undefined. Full-length IL-33 is a nuclear protein and may function as an “alarmin” during cell death, a process that is uncommon in chronic stable asthma. We demonstrate a previously unidentified mechanism of IL-33 activity that involves alternative transcript splicing, which may operate in stable asthma. In human airway epithelial cells, alternative splicing of the IL-33 transcript is consistently present, and the deletion of exons 3 and 4 (Δ exon 3,4) confers cytoplasmic localization and facilitates extracellular secretion, while retaining signaling capacity. In nonexacerbating asthmatics, the expression of Δ exon 3,4 is strongly associated with airway type 2 inflammation, whereas full-length IL-33 is not. To further define the extracellular role of IL-33 in stable asthma, we sought to determine the cellular targets of its activity. Comprehensive flow cytometry and RNA sequencing of sputum cells suggest basophils and mast cells, not ILC2s, are the cellular sources of type 2 cytokines in chronic asthma. We conclude that IL-33 isoforms activate basophils and mast cells to drive type 2 inflammation in chronic stable asthma, and novel IL-33 inhibitors will need to block all biologically active isoforms.


2006 ◽  
Vol 1 (9) ◽  
pp. 1934578X0600100 ◽  
Author(s):  
Valery M Dembitsky ◽  
Dmitri O Levitsky ◽  
Tatyana A Gloriozova ◽  
Vladimir V Poroikov

Although acetylenes are common as components of terrestrial plants, it is only within the last 30 years that biologically active polyacetylenes having unusual structural features have been reported from aquatic organisms: cyanobacteria, algae, fungi, invertebrates, and other sources. Naturally occurring aquatic acetylenes are of particular interest since many of them display important biological activities and possess antitumor, antibacterial, antimicrobial, antifouling, antifungal, pesticidal, phototoxic, HIV inhibitory, and immuno-suppressive properties. There is no doubt that they are of great interest, especially for the medicinal and/or pharmaceutical industries. This review presents structures and describes cytotoxic and anticancer activities of more than 230 acetylenic metabolites isolated from aquatic organisms. With the computer program PASS some additional biological activities are also predicted, which point toward possible new applications of these compounds. This review emphasizes the role of aquatic acetylenic compounds as an important source of leads for drug discovery.


2020 ◽  
Vol 9 (4) ◽  
pp. 40-43
Author(s):  
N. K. Yuldasheva ◽  
S. D. Gusakova ◽  
D. Kh. Nurullaeva ◽  
N. T. Farmanova ◽  
R. P. Zakirova ◽  
...  

Introduction. Lipids are a widespread group of biologically active substances in nature, making up the bulk of the organic substances of all living organisms. They accumulate in plants in seeds, as well as in fruits and perform a number of vital functions: they are the main components of cell membranes and the energy reserve for the body.Aim. Study of neutral lipids of sown oats (Avena sativa L.).Materials and methods. The objects of the study were fruits (grains) of oats of the sown variety "Tashkent 1," harvested in the Republic of Uzbekistan. Results and discussions. Neutral lipids of oat grains have been found to contain 13 fatty acids with a predominance of the sum of oleic, linolenic and linoleic acids. The total degree of unsaturation was almost 78%. Absorption bands characteristic of these substances were observed in the IR spectrum of MEGC.Conclusion. According to the results of the NL analysis, oat grains consisted of triacylglycerides and free LCDs, which were accompanied by hydrocarbons, phytosterols, triterpenoids and tocopherols.


1971 ◽  
Vol 68 (1_Suppl) ◽  
pp. S279-S294 ◽  
Author(s):  
Paul Robel

ABSTRACT Of the information available on steroid hormone metabolism in responsive tissues, only that relating hormone metabolism to physiological activity is reviewed, i. e. metabolite activity in isolated in vitro systems, binding of metabolites to target tissue receptors, specific steroid hormone metabolizing enzymes and relationship of hormone metabolism to target organ physiological state. Further, evidence is presented in the androgen field, demonstrating 5α-reduced metabolites, formed inside the target cells, as active compounds. This has led to a consideration of testosterone as a »prehormone«. The possibility that similar events take place in tissues responding to progesterone is discussed. Finally, the role of hormone metabolism in the regulation of hormone availability and/or renewal in target cells is discussed. In this context, reference is made to the potential role of plasma binding proteins and cytosol receptors.


2020 ◽  
Vol 25 (42) ◽  
pp. 4510-4522 ◽  
Author(s):  
Biancamaria Longoni ◽  
Irene Fasciani ◽  
Shivakumar Kolachalam ◽  
Ilaria Pietrantoni ◽  
Francesco Marampon ◽  
...  

: Exosomes are extracellular vesicles produced by eukaryotic cells that are also found in most biological fluids and tissues. While they were initially thought to act as compartments for removal of cellular debris, they are now recognized as important tools for cell-to-cell communication and for the transfer of pathogens between the cells. They have attracted particular interest in neurodegenerative diseases for their potential role in transferring prion-like proteins between neurons, and in Parkinson’s disease (PD), they have been shown to spread oligomers of α-synuclein in the brain accelerating the progression of this pathology. A potential neuroprotective role of exosomes has also been equally proposed in PD as they could limit the toxicity of α-synuclein by clearing them out of the cells. Exosomes have also attracted considerable attention for use as drug vehicles. Being nonimmunogenic in nature, they provide an unprecedented opportunity to enhance the delivery of incorporated drugs to target cells. In this review, we discuss current knowledge about the potential neurotoxic and neuroprotective role of exosomes and their potential application as drug delivery systems in PD.


2020 ◽  
Vol 16 ◽  
Author(s):  
Mayank Chaudhary

Background:: Renin angiotensin system (RAS) is a critical pathway involved in blood pressure regulation. Octapeptide, angiotensin II (Ang aII), is biologically active compound of RAS pathway which mediates its action by binding to either angiotensin II type 1 receptor (AT1R) or angiotensin II type 2 receptor (AT2R). Binding of Ang II to AT1R facilitates blood pressure regulation whereas AT2R is primarily involved in wound healing and tissue remodelling. Objective:: Recent studies have highlighted additional role of AT2R to counter balance detrimental effects of AT1R. Activation of angiotensin II type 2 receptor using AT2R agonist has shown effect on natriuresis and release of nitric oxide. Additionally, AT2R activation has been found to inhibit angiotensin converting enzyme (ACE) and enhance angiotensin receptor blocker (ARB) activity. These findings highlight the potential of AT2R as novel therapeutic target against hypertension. Conclusion:: The potential role of AT2R highlights the importance of exploring additional mechanisms that might be crucial for AT2R expression. Epigenetic mechanisms including DNA methylation and histone modification have been explored vastly with relation to cancer but role of such mechanisms on expression of AT2R has recently gained interest.


2019 ◽  
Vol 20 (18) ◽  
pp. 4416 ◽  
Author(s):  
Lara Console ◽  
Maria Tolomeo ◽  
Matilde Colella ◽  
Maria Barile ◽  
Cesare Indiveri

Background: the SLC52A2 gene encodes for the riboflavin transporter 2 (RFVT2). This transporter is ubiquitously expressed. It mediates the transport of Riboflavin across cell membranes. Riboflavin plays a crucial role in cells since its biologically active forms, FMN and FAD, are essential for the metabolism of carbohydrates, amino acids, and lipids. Mutation of the Riboflavin transporters is a risk factor for anemia, cancer, cardiovascular disease, neurodegeneration. Inborn mutations of SLC52A2 are associated with Brown-Vialetto-van Laere syndrome, a rare neurological disorder characterized by infancy onset. In spite of the important metabolic and physio/pathological role of this transporter few data are available on its function and regulation. Methods: the human recombinant RFVT2 has been overexpressed in E. coli, purified and reconstituted into proteoliposomes in order to characterize its activity following the [3H]Riboflavin transport. Results: the recombinant hRFVT2 showed a Km of 0.26 ± 0.07 µM and was inhibited by lumiflavin, FMN and Mg2+. The Riboflavin uptake was also regulated by Ca2+. The native protein extracted from fibroblast and reconstituted in proteoliposomes also showed inhibition by FMN and lumiflavin. Conclusions: proteoliposomes represent a suitable model to assay the RFVT2 function. It will be useful for screening the mutation of RFVT2.


Sign in / Sign up

Export Citation Format

Share Document