scholarly journals Beneficial Effect of Root or Foliar Silicon Applied to Cucumber Plants under Different Zinc Nutritional Statuses

Plants ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 2602
Author(s):  
José María Lozano-González ◽  
Clara Valverde ◽  
Carlos David Hernández ◽  
Alexandra Martin-Esquinas ◽  
Lourdes Hernández-Apaolaza

Zinc (Zn) is an essential micronutrient involved in a large variety of physiological processes, and its deficiency causes mainly growth and development disturbances, as well as oxidative stress, which results in the overproduction and accumulation of reactive oxygen species (ROS). A possible environmentally friendly solution is the application of silicon (Si), an element that has shown beneficial effects under abiotic and biotic stresses on many crops. Si could be applied through the roots or leaves. The aim of this work is to study the effect of Si applied to the root or shoot in cucumber plants under different Zn statuses (sufficiency, deficiency, and re-fertilization). Cucumber plants were grown in hydroponics, with 1.5 mM Si applied at the nutrient solution or sprayed on the leaves. During the different Zn statuses, SPAD index, fresh weight, ROS, and Si, Zn, P, Cu and B mineral concentration were determined. The results suggested that Si application had no effect during sufficiency and deficiency periods, however, during re-fertilization foliar application of Si, it showed faster improvement in SPAD index, better increment of fresh weight, and a decrease in ROS quantity, probably due to a memory effect promoted by Si previous application during the growing period. In summary, Si application to cucumber plants could be used to prepare plants to cope with a future stress situation, such as Zn deficiency, due to its prompt recovery after overcoming the stress period.

Agronomy ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 1715
Author(s):  
Diogo Henrique Morato de Moraes ◽  
Marcio Mesquita ◽  
Amanda Magalhães Bueno ◽  
Rilner Alves Flores ◽  
Henrique Fonseca Elias de Oliveira ◽  
...  

The beneficial effects of silicon (Si) on plants have been widely reported for its fruit qualitative improvements, growth gains, and protection against abiotic and biotic stresses. This study aimed to evaluate the combined effect of soil water potential (Ψs) (−30 and −60 kPa) and the foliar application of Si (0.0 (control), 1.0, 2.0, 3.0, and 4.0 g L−1) in the development of tomatoes grown in a greenhouse. We evaluated the biometric parameters and gas exchange in three periods (20, 34, and 48 days after planting). The rates of transpiration (E), stomatal conductance (gs), and net photosynthesis assimilation (An) were lower when the plants were subjected to water deficit. The foliar application of Si attenuated the effect of the water deficit in both levels applied to the crop. A high response was observed at −60 kPa, regardless of the evaluated period. However, a significant effect was not observed on the relative chlorophyll index and biomass accumulation when Si was applied. A foliar application up to 2.8 g L−1 promotes increases in An,gs, and E. It is highlighted that Si can promote improvements in gas exchange when plants are affected by a water deficit.


Genes ◽  
2020 ◽  
Vol 12 (1) ◽  
pp. 51
Author(s):  
Adesola J. Tola ◽  
Amal Jaballi ◽  
Hugo Germain ◽  
Tagnon D. Missihoun

Abiotic and biotic stresses induce the formation of reactive oxygen species (ROS), which subsequently causes the excessive accumulation of aldehydes in cells. Stress-derived aldehydes are commonly designated as reactive electrophile species (RES) as a result of the presence of an electrophilic α, β-unsaturated carbonyl group. Aldehyde dehydrogenases (ALDHs) are NAD(P)+-dependent enzymes that metabolize a wide range of endogenous and exogenous aliphatic and aromatic aldehyde molecules by oxidizing them to their corresponding carboxylic acids. The ALDH enzymes are found in nearly all organisms, and plants contain fourteen ALDH protein families. In this review, we performed a critical analysis of the research reports over the last decade on plant ALDHs. Newly discovered roles for these enzymes in metabolism, signaling and development have been highlighted and discussed. We concluded with suggestions for future investigations to exploit the potential of these enzymes in biotechnology and to improve our current knowledge about these enzymes in gene signaling and plant development.


Agronomy ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1216
Author(s):  
Sławomir Świerczyński ◽  
Agnieszka Antonowicz ◽  
Joanna Bykowska

The article describes an experiment conducted on maiden apple trees of selected cultivars growing in a nursery. The aim of the study was to investigate how the foliar application of four biostimulants (Aminoplant 0.4%, Biamino Plant 0.2%, Bispeed 0.2% and Fylloton 0.4%) and two fertilisers (Basfoliar 6-12-6 and Basfoliar 12-4-6+S both at a concentration of 0.5%) affected the growth of the trees cultivated with the mineral fertilisation reduced by half. The plants were sprayed with the preparations and fertilisers four times at three-week intervals, between late May and late July. Selected parameters of the plants’ physiological processes were also assessed: net photosynthetic rate (Pn), transpiration rate (E), stomatal conductance (C) and intracellular CO2 (I). The foliar application of all the biostimulants and fertilisers significantly improved the growth of the maiden apple trees. The lowest values of the plant growth parameters were noted in the control combination, which was treated with a full dose of mineral fertiliser. The foliar spraying of the apple trees particularly improved the total length and number of side shoots and the fresh weight of maiden apple trees. The apple tree cultivars differed in their growth parameters, and the influence of individual foliar treatments was not conclusive. The foliar application of selected preparations intensified the leaf transpiration coefficient and the internal concentration of carbon dioxide, but it did not increase the net photosynthesis intensity or stomatal conductance.


2020 ◽  
Vol 477 (10) ◽  
pp. 1879-1892
Author(s):  
Manoj Kumar ◽  
Komal Sharma ◽  
Akhilesh K. Yadav ◽  
Kajal Kanchan ◽  
Madhu Baghel ◽  
...  

Calcium (Ca2+) signaling is involved in the regulation of diverse biological functions through association with several proteins that enable them to respond to abiotic and biotic stresses. Though Ca2+-dependent signaling has been implicated in the regulation of several physiological processes in Chlamydomonas reinhardtii, Ca2+ sensor proteins are not characterized completely. C. reinhardtii has diverged from land plants lineage, but shares many common genes with animals, particularly those encoding proteins of the eukaryotic flagellum (or cilium) along with the basal body. Calcineurin, a Ca2+/calmodulin-dependent protein phosphatase, is an important effector of Ca2+ signaling in animals, while calcineurin B-like proteins (CBLs) play an important role in Ca2+ sensing and signaling in plants. The present study led to the identification of 13 novel CBL-like Ca2+ sensors in C. reinhardtii genome. One of the archetypical genes of the newly identified candidate, CrCBL-like1 was characterized. The ability of CrCBL-like1 protein to sense as well as bind Ca2+ were validated using two-step Ca2+-binding kinetics. The CrCBL-like1 protein localized around the plasma membrane, basal bodies and in flagella, and interacted with voltage-gated Ca2+ channel protein present abundantly in the flagella, indicating its involvement in the regulation of the Ca2+ concentration for flagellar movement. The CrCBL-like1 transcript and protein expression were also found to respond to abiotic stresses, suggesting its involvement in diverse physiological processes. Thus, the present study identifies novel Ca2+ sensors and sheds light on key players involved in Ca2+signaling in C. reinhardtii, which could further be extrapolated to understand the evolution of Ca2+ mediated signaling in other eukaryotes.


2017 ◽  
Vol 62 (1) ◽  
pp. 21-39 ◽  
Author(s):  
Robert G. Sowden ◽  
Samuel J. Watson ◽  
Paul Jarvis

Plants have evolved complex tolerance systems to survive abiotic and biotic stresses. Central to these programmes is a sophisticated conversation of signals between the chloroplast and the nucleus. In this review, we examine the antagonism between abiotic stress tolerance (AST) and immunity: we propose that to generate immunogenic signals, plants must disable AST systems, in particular those that manage reactive oxygen species (ROS), while the pathogen seeks to reactivate or enhance those systems to achieve virulence. By boosting host systems of AST, pathogens trick the plant into suppressing chloroplast immunogenic signals and steer the host into making an inappropriate immune response. Pathogens disrupt chloroplast function, both transcriptionally—by secreting effectors that alter host gene expression by interacting with defence-related kinase cascades, with transcription factors, or with promoters themselves—and post-transcriptionally, by delivering effectors that enter the chloroplast or alter the localization of host proteins to change chloroplast activities. These mechanisms reconfigure the chloroplast proteome and chloroplast-originating immunogenic signals in order to promote infection.


2021 ◽  
Author(s):  
Beatriz Val Torregrosa ◽  
Mireia Bundo ◽  
Hector Martin Cardoso ◽  
Marcel Bach Pages ◽  
Tzyy Jen Chiou ◽  
...  

In nature, plants are concurrently exposed to a number of abiotic and biotic stresses. Our understanding of convergence points between responses to combined biotic/abiotic stress pathways remains, however, rudimentary. Here we show that MIR399 overexpression, loss-of-function of PHO2 (PHOSPHATE2), or treatment with high Pi, is accompanied by an increase in phosphate (Pi) content and accumulation of reactive oxygen species (ROS) in Arabidopsis thaliana. High Pi plants (e.g. miR399 overexpressor, pho2 mutant, and plants grown under high Pi supply) exhibited resistance to infection by necrotrophic and hemibiotrophic fungal pathogens. In the absence of pathogen infection, the expression level of genes in the salicylic acid (SA)- and jasmonic acid (JA)-dependent signaling pathways was higher in high Pi plants compared to wild type plants, which is consistent with increased levels of SA and JA in non-infected high Pi plants. During infection, an opposite regulation in the two branches of the JA pathway (ERF1/PDF1.2 and MYC2/VSP2) occurs in high Pi plants. Thus, while the ERF1-PDF1 branch positively responds to fungal infection, the MYC2/VSP2 branch is negatively regulated during pathogen infection in high Pi plants. This study supports that Pi accumulation promotes resistance to infection by fungal pathogens in Arabidopsis, while providing a basis to better understand crosstalk between Pi signaling and hormonal signalling pathways for modulation of plant immune responses.


2006 ◽  
Vol 41 (1-2) ◽  
pp. 23-35 ◽  
Author(s):  
M. Pogány ◽  
B. D. Harrach ◽  
Y. M. Hafez ◽  
B. Barna ◽  
Z. Király ◽  
...  

2020 ◽  
Vol 2 (338) ◽  
pp. 5-11
Author(s):  
A. K. Rakhmetullina ◽  
S. K. Turasheva ◽  
A. A. Bolshoy ◽  
A. T. Ivashchenko

The molecular mechanisms for increasing plant productivity remain poorly understood. Genes of C2H2, GRAS, ERF transcription factors (TFs) families play a key role in the physiological processes of plants, including wheat. In recent years, the important role of miRNAs in the regulation of the expression of many genes involved in the formation of productivity has been established. Wheat miRNA (mRNA-inhibiting RNA) target genes are involved in the regulation of the development of flowers, seeds, root, shoots, and responses to abiotic and biotic stresses. The miRNAs binding sites in mRNAs of C2H2, ERF, GRAS TFs families were performed using the MirTarget program, which calculates the free energy of miRNA binding with mRNA, the schemes and positions of nucleotide interactions with binding sites. Wheat genes were used as the object of the study, since wheat is one of the main grain crops in Kazakhstan and in many other countries. The presence of miRNA binding sites with high nucleotide complementarity in mRNA of C2H2, ERF, GRAS TF genes of wheat was shown. All binding sites of these miRNAs were located in the CDS of mRNA target genes. Of the 125 miRNAs of T. aestivum, miR319-3p efficiently bound with mRNA of C2H2 family genes with the value of ΔG/ΔGm equal 91 %. miR7757-5p interacted with mRNA of ERF and GRAS family genes with the value of ΔG/ΔGm equal to 92 % and 90 % respectively. miR9778-5p bound with mRNA of C2H2, ERF, GRAS family genes to varying degrees. Each of the miR408-3p, miR9780-3p, and miR9778-5p had four target genes with the value of ΔG/ΔGm equal to 87 % and 89 %. These data indicate the dependency of C2H2, GRAS, ERF TFs families expression on miRNA. The obtained results expand the fundamental ideas about the regulatory mechanisms of miRNA in the process of plant growth and development.


2019 ◽  
Vol 20 (2) ◽  
pp. 379 ◽  
Author(s):  
Anna Piasecka ◽  
Piotr Kachlicki ◽  
Maciej Stobiecki

Abiotic and biotic stresses are the main reasons of substantial crop yield losses worldwide. Research devoted to reveal mechanisms of plant reactions during their interactions with the environment are conducted on the level of genome, transcriptome, proteome, and metabolome. Data obtained during these studies would permit to define biochemical and physiological mechanisms of plant resistance or susceptibility to affecting factors/stresses. Metabolomics based on mass spectrometric techniques is an important part of research conducted in the direction of breeding new varieties of crop plants tolerant to the affecting stresses and possessing good agronomical features. Studies of this kind are carried out on model, crop and resurrection plants. Metabolites profiling yields large sets of data and due to this fact numerous advanced statistical and bioinformatic methods permitting to obtain qualitative and quantitative evaluation of the results have been developed. Moreover, advanced integration of metabolomics data with these obtained on other omics levels: genome, transcriptome and proteome should be carried out. Such a holistic approach would bring us closer to understanding biochemical and physiological processes of the cell and whole plant interacting with the environment and further apply these observations in successful breeding of stress tolerant or resistant crop plants.


2011 ◽  
Vol 12 (7) ◽  
pp. 643-656 ◽  
Author(s):  
Ederson Akio Kido ◽  
Pedranne Kelle de Araujo Barbosa ◽  
Jose Ribamar Costa Ferreira Neto ◽  
Valesca Pandolfi ◽  
Laureen Michelle Houllou-Kido ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document