scholarly journals Effect of Water Stress during Grain Filling on Yield, Quality and Physiological Traits of Illpa and Rainbow Quinoa (Chenopodium quinoa Willd.) Cultivars

Plants ◽  
2019 ◽  
Vol 8 (6) ◽  
pp. 173 ◽  
Author(s):  
Angie L. Gámez ◽  
David Soba ◽  
Ángel M. Zamarreño ◽  
José M. García-Mina ◽  
Iker Aranjuelo ◽  
...  

The total area under quinoa (Chenopodium quinoa Willd.) cultivation and the consumption of its grain have increased in recent years because of its nutritional properties and ability to grow under adverse conditions, such as drought. Climate change scenarios predict extended periods of drought and this has emphasized the need for new crops that are tolerant to these conditions. The main goal of this work was to evaluate crop yield and quality parameters and to characterize the physiology of two varieties of quinoa grown under water deficit in greenhouse conditions. Two varieties of quinoa from the Chilean coast (Rainbow) and altiplano (Illpa) were used, grown under full irrigation or two different levels of water deficit applied during the grain filling period. There were no marked differences in yield and quality parameters between treatments, but the root biomass was higher in plants grown under severe water deficit conditions compared to control. Photosynthesis, transpiration and stomatal conductance decreased with increased water stress in both cultivars, but the coastal variety showed higher water use efficiency and less discrimination of 13C under water deficit. This response was associated with greater root development and a better stomatal opening adjustment, especially in the case of Rainbow. The capacity of Rainbow to increase its osmoregulant content (compounds such as proline, glutamine, glutamate, K and Na) could enable a potential osmotic adjustment in this variety. Moreover, the lower stomatal opening and transpiration rates were also associated with higher leaf ABA concentration values detected in Rainbow. We found negative logarithmic relationships between stomatal conductance and leaf ABA concentration in both varieties, with significant R2 values of 0.50 and 0.22 in Rainbow and Illpa, respectively. These moderate-to-medium values suggest that, in addition to ABA signaling, other causes for stomatal closure in quinoa under drought such as hydraulic regulation may play a role. In conclusion, this work showed that two quinoa cultivars use different strategies in the face of water deficit stress, and these prevent decreases in grain yield and quality under drought conditions.

2004 ◽  
Vol 16 (3) ◽  
pp. 155-161 ◽  
Author(s):  
Mara de Menezes de Assis Gomes ◽  
Ana Maria Magalhães Andrade Lagôa ◽  
Camilo Lázaro Medina ◽  
Eduardo Caruso Machado ◽  
Marcos Antônio Machado

Thirty-month-old 'Pêra' orange trees grafted on 'Rangpur' lemon trees grown in 100 L pots were submitted to water stress by the suspension of irrigation. CO2 assimilation (A), transpiration (E) and stomatal conductance (g s) values declined from the seventh day of stress, although the leaf water potential at 6:00 a.m. (psipd) and at 2:00 p.m. (psi2) began to decline from the fifth day of water deficiency. The CO2 intercellular concentration (Ci) of water-stressed plants increased from the seventh day, reaching a maximum concentration on the day of most severe stress. The carboxylation efficiency, as revealed by the ratio A/Ci was low on this day and did not show the same values of non-stressed plants even after ten days of rewatering. After five days of rewatering only psi pd and psi2 were similar to control plants while A, E and g s were still different. When psi2 decreases, there was a trend for increasing abscisic acid (ABA) concentration in the leaves. Similarly, stomatal conductance was found to decrease as a function of decreasing psi2. ABA accumulation and stomatal closure occurred when psi2 was lower than -1.0 MPa. Water stress in 'Pera´ orange trees increased abscisic acid content with consequent stomatal closure and decreased psi2 values.


Molecules ◽  
2019 ◽  
Vol 24 (14) ◽  
pp. 2646 ◽  
Author(s):  
Lipan ◽  
Moriana ◽  
Lluch ◽  
Cano-Lamadrid ◽  
Sendra ◽  
...  

The influence of full irrigation, double-regulated (RDI) and sustained deficit irrigation (SDI) treatments on almond quality was assessed by analyzing different parameters: sugars, organic acids, antioxidant activity, total phenolic content (TPC), and volatile compounds. Almond quality studies for plants submitted to water stress are scarce, and it is essential to understand the biochemical responses of plants to water stress in maintaining fruit yield and quality. Citric acid, sucrose, antioxidant activity, and TPC were not affected by the application of studied deficit irrigation strategies (DI). An increase in malic acid and a decrease in glucose was observed for stressed samples (T3 and T4), while a higher number of total volatiles compounds was found for moderate RDI (T2). Using deficit irrigation strategies, the almond yield and quality was not changed, and in fact, some parameters, such as glucose and key volatile compounds, slightly increased under moderate RDI. This finding might encourage farmers to implement these strategies and contribute to sustainable agriculture.


2017 ◽  
Vol 30 (3) ◽  
pp. 748-759 ◽  
Author(s):  
PAULO JORGE DE OLIVEIRA PONTE DE SOUZA ◽  
VIVIAN DIELLY DA SILVA FARIAS ◽  
MARCUS JOSÉ ALVES DE LIMA ◽  
THAYNARA FERNANDES RAMOS ◽  
ADRIANO MARLISOM LEÃO DE SOUSA

ABSTRACT This work evaluated the effect of soil water availability on growth and productivity variables of cowpea in northeastern Pará, Brazil. The experiment was carried out in a field of 2,100 m2 at the experimental site of the Federal Rural University of Amazon, during the driest season of the years 2011, 2012 and 2013, in a completely randomised design with two treatments (irrigated and non-irrigated), both with 12 replications in the reproductive phase (2012 and 2013). Growth and productivity data were submitted to analysis of variance with two variation factors (water regime and experimental year) at 5% probability. Student's t -test at 5% probability was used in the means of the stomatal conductance data, since this was monitored only in 2012. Final biomass production presented a reduction of 54.3% in 2012 and 26.4% in 2013 as a result of water deficit (DEF) of 76 and 26 mm, respectively. Mean stomatal conductance was reduced by 73% in the grain-filling stage as a result of the lower water availability during this period. Average cowpea productivity under water deficit reached 1,257 kg ha-1 in 2012 and 1,396 kg ha-1 in 2013. The reduction in water supply over the reproductive period significantly decreased production by 72 and 41% (F test, p < 0.05) in 2012 and 2013, respectively. An accumulated water deficit during the reproductive phase caused a maximum LAI reduction of 47% in 2012 (DEF of 76 mm) and of 13% in 2013 (DEF of 26 mm).


2006 ◽  
Vol 18 (2) ◽  
pp. 341-350 ◽  
Author(s):  
José Beltrano ◽  
Marta Guillermina Ronco ◽  
María Cecilia Arango

Water deficits cause large yield losses in wheat. Although anthesis is generally considered the most vulnerable period, water deficit during grain filling can also cause yield losses. The objective of this study was to investigate the effect of water stress and rewatering, at three different grain developmental stages, on physiological and grain filling parameters and on yield components. Wheat plants were subjected to water deficit and rewatering at the watery ripe, milk and soft dough stages. In the flag leaf, water stress decreased the relative water content, the chlorophyll and protein content and increased the leakage of solutes, at all three studied grain filling stages. Water stress at the watery ripe and milk stages reduced the final grain dry mass by 47 % and 20 %, respectively. This reduction was due to a decrease in the grain filling period and to a significant reduction in the maximum rate of grain-fill. Water stress imposed at the watery ripe stage reduced not only the linear growth phase but also its slope; grain number per spike and the 1000-kernel weight were also significantly reduced. SDS-PAGE patterns of grain proteins at the watery ripe stage did not differ between the controls, stressed or rewatered treatments. Protein patterns at the milk stage changed substantially with water stress, mainly for the high molecular weight glutenin subunits and gliadins. Three new bands were observed with apparent molecular weights of 108.5 kDa, 84.8 kDa and 63 kDa. Rewatering reverted water stress effects when it was imposed at the milk stage. Water deficit at the soft dough stage did not have any effect on protein grain patterns.


1998 ◽  
Vol 25 (8) ◽  
pp. 893 ◽  
Author(s):  
J. Flexas ◽  
J. M. Escalona ◽  
H. Medrano

The importance of both stomatal closure and reduced carboxylation efficiency on the photo- synthesis decline in response to long term water stress was previously measured in field-grown grapevines. Here we address the question of whether water stress affects the photochemical capacity of leaves, measuring gas-exchange rates and chlorophyll fluorescence under drought and moderate irrigat- ion at intervals through the summer season during three consecutive years. We conclude that usually water stress does not induce photoinhibition in field-grown grapevines, even when stomatal conductance and photosynthesis are reduced to very low values. Moreover, down-regulat- ion of photochemical reactions is low, leading to a general pattern of photosynthetic response to drought consistent in large reductions of stomatal conductance (g), followed by a consistent decrease of CO2 assimilation (A) but with a much lower effect on electron transport rate (ETR). In consequence, the intrinsic water-use efficiency (A/g) increased, as well as the ratio ETR/A. It is suggested that increased electron transport to alternative pathways, such as photorespiration, prevented further down-regulation of ETR under drought conditions. These results are in agreement with our previous reports for potted plants. However it is clear that, under field conditions with a much more slowly developed water stress, ETR reductions are more attenuated than in potted plants, reducing their incidence in carbon assimilation, which seems to be mainly regulated by stomatal closure.


1989 ◽  
Vol 16 (6) ◽  
pp. 549 ◽  
Author(s):  
SL Steinberg ◽  
MJ Mcfarland ◽  
JC Miller

A gradation, that reflects the maturity of the leaves, exists in the leaf water, osmotic and turgor potential and stomatal conductance of leaves along current and 1-year-old branches of peach. Predawn leaf water potentials of immature folded leaves were approximately 0.24 MPa lower than mature leaves under both well-watered and dry conditions. During the daytime the leaf water potential of immature leaves reflected the water potential produced by water flux for transpiration. In well- watered trees, mature and immature unfolded leaves had a solute potential at least 0.5 MPa lower than immature folded leaves, resulting in a turgor potential that was approximately 0.8 MPa higher. The turgor requirement for growth appeared to be much less than that maintained in mature leaves. As water stress developed and leaf water potentials decreased, the osmotic potential of immature folded leaves declined to the level found in mature leaves, thus maintaining turgor. In contrast, mature leaves showed little evidence of turgor maintenance. Stomatal conductance was lower in immature leaves than in fully mature leaves. With the onset of water stress, conductance of mature leaves declined to a level near that of immature leaves. Loss of turgor in mature leaves may be a major factor in early stomatal closure. It was concluded that osmotic adjustment played a role in maintenance of a leaf water status favorable for some growth in water-stressed immature peach leaves.


Irriga ◽  
2015 ◽  
Vol 20 (4) ◽  
pp. 705-717 ◽  
Author(s):  
Amanda Silva Costa ◽  
Antonio Lucineudo Oliveira Freire ◽  
Ivonete Alves Bakke ◽  
Francisco Hevilásio Freire Pereira

RESPOSTAS FISIOLÓGICAS E BIOQUÍMICAS DE PLANTAS DE AROEIRA (Myracrodruon urundeuva Allemão) AO DÉFICIT HÍDRICO E POSTERIOR RECUPERAÇÃO  AMANDA SILVA COSTA1; ANTONIO LUCINEUDO DE OLIVEIRA FREIRE2; IVONETE ALVES BAKKE3 E FRANCISCO HEVILÁSIO FREIRE PEREIRA4 1Engenheira Florestal - Mestre em Ciências Florestais pelo Programa de Pós-Graduação em Ciências Florestais – Unidade Acadêmica de Engenharia Florestal - Universidade Federal de Campina Grande/UFCG, Patos, PB, Brasil, [email protected] Agrônomo – Doutor - Unidade Acadêmica de Engenharia Florestal - Universidade Federal de Campina Grande/UFCG, Patos, PB, Brasil, [email protected] Florestal – Doutora - Unidade Acadêmica de Engenharia Florestal - Universidade Federal de Campina Grande/UFCG, Patos, PB, Brasil, [email protected] Agrônomo – Doutor - Unidade Acadêmica de Ciências Agrárias - Universidade Federal de Campina Grande/UFCG, Pombal, PB, Brasil, [email protected]  1 RESUMO A aroeira (Myracrodruon urundeuva Allemão) vem sendo explorada de forma desordenada, ocasionando redução drástica no número de indivíduos, fazendo com que passasse a fazer parte da lista de espécies ameaçadas de extinção, sendo oportuna a prioridade da conservação. No entanto, pouco se sabe a respeito de aspectos relacionados à sua fisiologia, principalmente acerca dos mecanismos fisiológicos que determinam sua tolerância à seca. O objetivo deste trabalho foi avaliar as trocas gasosas e o acúmulo de solutos orgânicos em plantas jovens de aroeira submetidas ao déficit hídrico e posterior recuperação. Plantas com doze meses de idade, mantidas em sacos plásticos pretos, contendo 5 kg de uma mistura de solo e esterco bovino (2:1) foram submetidas aos tratamentos irrigados (controle) e de déficit hídrico, o qual foi imposto através da suspensão da irrigação. Decorridos 12 dias de déficit hídrico, as plantas foram reidratadas. As plantas sob déficit hídrico apresentaram teor relativo de água de 70% ao final do período de estresse. O déficit hídrico promoveu redução progressiva na condutância estomática, na transpiração, na fotossíntese líquida e na eficiência no uso da água das plantas. A concentração intercelular de CO2 e as concentrações foliares de açúcares totais e aminoácidos solúveis totais aumentaram. Após a retomada da irrigação, ocorreu rápida recuperação no teor relativo de água, mas a recuperação da condutância estomática e da fotossíntese líquida ocorreu mais lentamente. As plantas de aroeira foram capazes de recuperar o status hídrico e o funcionamento do mecanismo estomático e fotossintético após a recuperação, demonstrando tolerância ao déficit hídrico. Palavras-chave: Fotossíntese, solutos orgânicos, trocas gasosas, tolerância à seca.  COSTA, A, S.; FREIRE, A. L. O.; BAKKE, I. A.; PEREIRA, F. H. R.PHYSIOLOGICAL AND BIOCHEMICAL RESONSES OF Myracrodruon urundeuva Allemão  PLANTS TO WATER DEFICIT AND REHYDRATION   2 ABSTRACT Myracrodruon urundeuva Allemao plants have been explored in a disorderly way, which   has caused   a sharp reduction in the number of individuals, and  put  them on  the list of endangered species. Therefore, their conservation became timely priority. However, little is known about aspects concerning their physiology, mainly those related to physiological mechanisms which determine their drought tolerance.   The objective of this study was to evaluate the stomatal behavior and accumulation of organic solutes in young plants subjected to water stress and subsequent rehydration.  Twelve  month-old  plants, kept in black plastic bags, with 5 kg of a mixture of soil and bovine manure (2:1) were subjected to irrigation treatment (control) and water deficit by irrigation withdrawal. After 12 day-water deficit, plants were rehydrated.  Plants under water deficit showed relative water content of 70% at the end of the stress. Water stress caused progressive reduction in stomatal conductance, transpiration,  photosynthesis rate  and water use efficiency of plants. Intercellular concentration of CO2   and leaf concentrations of total sugar and soluble amino acids increased.   After resumption of irrigation, rapid recovery of relative content of water was observed in the second day, but recovery of the stomatal conductance and photosynthesis rate was slower.  Plants were able to recover   the water status and functioning of the stomatal and photosynthetic mechanisms after rehydration, which shows their tolerance to water stress. Keywords: Photosynthesis, organic solutes, gas exchanges, drought  tolerance. 


Author(s):  
Adnan Al-ghawry ◽  
Attila Yazar ◽  
Mustafa Unlu ◽  
Celaleddin Barutcular ◽  
Yeşim Bozkurt Çolak

Abstract A field experiment was carried out to evaluate the effect of different conventional and supplemental irrigation strategies on leaf stomatal conductance (gs) and chlorophyll content (SPAD) yield and irrigation water productivity (IWP) of wheat using sprinkler line source in 2014 and 2015 in the Mediterranean region. The irrigation strategies were, supplemental irrigation (SI) during flowering and grain filling (SIFG), SI during grain filling (SIG), SI during flowering (SIF) and conventional irrigation (CI). These strategies were conducted under four irrigation levels 25, 50, 75, 100% and a rain-fed as control. The results indicated that CI100 and CI75 produced the greater grain yield and IWP, respectively. CI100 resulted in the increased chlorophyll content by 8.8% over rain-fed. The results confirmed that the SPAD and stomatal conductance values were not equally sensitive to water stress during growth stages. The wheat crop suffered a greater SPAD and gs reductions when the water stress occurred during the grain filling stage (SIF strategy) compared to other strategies, which means that the grain filling stage is more sensitive and effective to decrease the yield of winter wheat. The higher grain yields were achieved when the seasonal mean gs reached 207.4 mmol/m2s in CI and 169.2 mmol/m2s in SI, and the stomatal closure responded well to low, moderate and severe drought treatments. The leaf stomatal conductance (gs) was correlated linearly with grain yield. These relations could be used as a physiological indicator to evaluate water stress effect on the growth and productivity of wheat.


Sign in / Sign up

Export Citation Format

Share Document