scholarly journals Variation in Morphological and Quality Parameters in Garlic (Allium sativum L.) Bulb Influenced by Different Photoperiod, Temperature, Sowing and Harvesting Time

Plants ◽  
2020 ◽  
Vol 9 (2) ◽  
pp. 155 ◽  
Author(s):  
Muhammad Jawaad Atif ◽  
Bakht Amin ◽  
Muhammad Imran Ghani ◽  
Muhammad Ali ◽  
Zhihui Cheng

Photoperiod (light) and temperature as abiotic factors having significant impact on the garlic bulb morphology and quality. In various bulb plants including garlic, bulbing is affected by photoperiod, temperature, sowing date and the plant age. In this backdrop experiments were performed to understand the effect of different photoperiods (10 h/14 h, 12 h/12 h and 14 h/10 h (light/dark)), temperatures (25 °C/18 °C and 30 °C/20 °C (light/dark)), sowing dates (D0801: 1st August, D0901: 1st September and D1001: 1st October) and plant ages (A80, A60 and A40: 80, 60 and 40 days after planting) on garlic cultivars viz; G103, G024 and G2011-5. Parameters including morphological (plant height, fresh weight and pseudostem diameter), bulb attributes (diameter, weight, height and bulbing index), growth period and bulb quality related traits (total soluble solid (TSS), contents of soluble protein, soluble sugar, total sugar, glucose, sucrose, fructose, starch, total phenol and total flavonoid) were assayed. Longer photoperiod (14 h), higher temperature (30 °C), early sowing (D0801) and maximum plant age (A80) had maximum morphological and bulb quality related traits for cv. G103. These results showed that early sowing, maximum plant age, longer photoperiod and higher temperature are important for garlic bulb formation and quality. Moreover, the regulation of garlic bulb morphology and quality is achievable over the switch of sowing date, plant age, light and growth temperature.

Agronomy ◽  
2019 ◽  
Vol 9 (12) ◽  
pp. 879 ◽  
Author(s):  
Muhammad Jawaad Atif ◽  
Bakht Amin ◽  
Muhammad Imran Ghani ◽  
Sikandar Hayat ◽  
Muhammad Ali ◽  
...  

Growth and bulb development in garlic is affected considerably by variations in photoperiod and temperature thereby influencing its morphology, physiology, and nutritive quality. Varied combinations of photoperiods and temperatures may influence the bulb development and quality, and can determine the suitability of a cultivar for a particular region. Experiments were conducted to study the impact of different photoperiod and temperature combinations on the growth, morpho-physiology, and nutritive quality of garlic bulb. Three garlic cultivars viz; G103, G024, and G2011-5 were exposed to different combinations of photoperiod (8 h/16 h, 10 h/14 h, 12 h/12 h, 14 h/10 h, 16 h/8 h (light/dark)) and temperature (20 °C/15 °C, 25 °C/18 °C, and 30 °C/20 °C). Results revealed that longer photoperiod (14 h or 16 h) and higher temperature (25 °C or 30 °C) treatments significantly improved the garlic bulbing imparting maximum bulb diameter, height, bulbing index, and the shortest growth period. Whereas, 12-h photoperiod had maximum bulb weight. In addition, total soluble solid (TSS), content of soluble protein, soluble sugar, total sugar, glucose, sucrose, fructose, starch, total phenols, and total flavonoids increased significantly because of 14-h photoperiod and 30 °C temperature condition, however exhibited decline with 8 h photoperiod and lowest temperature (20 °C). These alterations were related to bulb characteristics and bulbing index. Maximum plant standing height and pseudostem diameter of the garlic plant were observed at 20 °C. Additionally, plants under the combination of 14 h–30 °C had maximum fresh weight, bulb diameter, shortest growth period, maximum physiological and nutritive quality traits of the bulb, while as 12 h–30 °C combinations resulted in maximum bulb weight and 16 h–30 °C had maximum bulb height. Among cultivars cv. G103 showed best response to tested photoperiod and temperature combinations in terms of morpho-physiological and biochemical attributes studied, except for bulbing index which was maximum in cv. G024. Present study concludes the influence of photoperiod and temperature combinations on garlic growth and bulbing characteristics through the modulations induced in soluble protein, sugars, and phenolic compounds.


Foods ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 449
Author(s):  
Camilo Gutiérrez-Jara ◽  
Cristina Bilbao-Sainz ◽  
Tara McHugh ◽  
Bor-Sen Chiou ◽  
Tina Williams ◽  
...  

The cracking of sweet cherries causes significant crop losses. Sweet cherries (cv. Bing) were coated by electro-spraying with an edible nanoemulsion (NE) of alginate and soybean oil with or without a CaCl2 cross-linker to reduce cracking. Coated sweet cherries were stored at 4 °C for 28 d. The barrier and fruit quality properties and nutritional values of the coated cherries were evaluated and compared with those of uncoated sweet cherries. Sweet cherries coated with NE + CaCl2 increased cracking tolerance by 53% and increased firmness. However, coated sweet cherries exhibited a 10% increase in water loss after 28 d due to decreased resistance to water vapor transfer. Coated sweet cherries showed a higher soluble solid content, titratable acidity, antioxidant capacity, and total soluble phenolic content compared with uncoated sweet cherries. Therefore, the use of the NE + CaCl2 coating on sweet cherries can help reduce cracking and maintain their postharvest quality.


Author(s):  
D. C. Preethu ◽  
S. M. Savita ◽  
M. S. Dinesha ◽  
B. S. Rajendra Prasad ◽  
Lata R. Kulkarni

Aim: The aim of this study was to evaluate effectiveness of various microbial compost cultures for aerobic-composting of farm wastes. Place of Study: Three trials were conducted on farmer’s field and one at Krishi Vigyana Kendra (KVK) Ramanagara district. Methodology: During the composting process, days to compost, maturity in terms of changes in temperature, pH and composting dynamics were studied. Compost quality parameters such as macro and micro-nutrients and C:N ratio and stability  of the compost were recorded at different intervals.  Results: The results showed that the compost culture from  IIHR and UASB had taken 90 and 105 days respectively, for complete stabilization; further had relatively higher temperature and pH during the initial phase and reached ambient condition at maturity stage, C:N ratio has showed gradual reduction from 39.65 to 15.98 and 39.75 to 13.66% respectively in IIHR and UASB cultures, they also had high macro, secondary and micro nutrients(IIHR-1.55% N, 0.93% P, 0.95% K, 4.39% Ca, 0.69% Mg, 0.19%S, 930 ppm Fe, 10ppm Cu, 305ppm Mn, 82ppm Zn, 26 ppm B  UASB-1.59% N, 0.91% P, 0.97% K, 4.25%Ca, 0.88% Mg, 0.21%S, 948 ppm Fe, 9ppm Cu, 325ppm Mn, 93ppm Zn, 28ppm B) content and resulted in more compost production ( 3.3 and 2.8 t/year, respectively) with B:C ratio of 6.67 and 7.25 respectively when compared to NCOF (T3) and farmers practice (T4). Conclusion: Aerobic-composting of farm waste using microbial culture of UASB and IIHR proved to be an effective technology that aids to convert organic farm waste into valuable organic manure with an advantage of minimizing the environmental contamination associated with burning of residues.


Planta ◽  
2015 ◽  
Vol 242 (4) ◽  
pp. 951-962 ◽  
Author(s):  
Sarit Rohkin Shalom ◽  
Daryl Gillett ◽  
Hanita Zemach ◽  
Sagie Kimhi ◽  
Itzhak Forer ◽  
...  

2012 ◽  
Vol 2012 ◽  
pp. 1-10 ◽  
Author(s):  
Zhijun Yang ◽  
Rong Liang ◽  
Xiangqing Zeng ◽  
Mingsheng Peng

The results of a microscopy and FTIR and PL spectra study of the natural polycrystalline diamonds from the Mengyin kimberlite pipes show that they can be classified as the euhedral faceted polycrystalline diamonds (EFPCDs) and anhedral rounded polycrystalline diamonds (ARPCDs). Different diamond grains or their points were formed in different conditions or processes. They were not formed in diamond nucleation stage, but in the diamond growth period. They probably originated from the relatively deeper mantle and were formed in the environment like the peridotitic (P) type diamond single crystals. The EFPCDs did not undergo a remarkable dissolution process during their formation and were possibly fast formed shortly before the kimberlite eruption. The ARPCDs not only were formed at a higher temperature than the EFPCDs but also underwent a notable dissolution process and had been stored relatively longer in the mantle. Fluids or melts probably participated in the formation of the ARPCDs or modified them during the period of their storage in the mantle.


Author(s):  
Jingwei Wang ◽  
Yuan Li ◽  
Wenquan Niu

To determine the soil mechanism in root-zone caused by water saving and the production response to alternate drip irrigation (ADI), the present study investigated the effects of deficit ADI on tomato growth using the conventional surface drip irrigation (CDI) as a control. The interactions among the experimental treatments on root index, photosynthetic efficiency, biomass accumulation, yield, fruit quality and irrigation water use efficiency (IWUE) were assessed and the inner mechanism of root-soil effecting on tomato growth, photosynthate distribution, yield and quality was discussed. ADI significantly enhanced root-soil interaction, promoted soil nitrogen and phosphorus absorption by tomato and tomato growth. However, different soil moisture deficits significantly affected tomato photosynthate accumulation and distribution, as well as fruit quality. With irrigation amount of 50% field capacity (F), ADI significantly increased soluble sugar, total soluble solid and lycopene by 38.08%, 19.48% and 30.05%, respectively, compared to those of CDI, but decreased irrigation amounts by 29.86% in comparison with the CDI one. ADI of 70% F could significantly distribute more photosynthate to fruits, thus enhanced tomato yields by 24.6% and improved IWUE by 17.05% compared to that of CDI. In addition, ADI of 70% F improved tomato fruits quality, and in particular organic acid was decreased by 43.75% and sugar-acid ratio was increased by 97% compared to CDI. However, ADI of 60% F distributed more photosynthate to plant, showing no significant difference of yields in comparison with CDI and ADI of 70% F, but a higher IWUE by 19.54% than that of CDI. ADI of 60% F significantly enhanced soluble sugar, total soluble solid, soluble protein, lycopene and sugar-acid ratio in tomato fruits by 2.06, 1.26, 1.61, 1.4 and 3.2 times respectively compared to CDI. Therefore, ADI of 60% or 70% F can be overall recommended for tomato production in a greenhouse, plant growth, fruit yield and quality, and IWUE.


1974 ◽  
Vol 83 (1) ◽  
pp. 117-124 ◽  
Author(s):  
H. M. Ishag ◽  
M. B. Taha

SUMMARYThe effect of sowing date and nitrogen on tillering patterns, survival and contribution of reproductive tillers to grain yield of standard and Mexican wheat cultivars were studied for two seasons.Maximum number of tillers/plant, 3·2–4·5, was observed after 40 and 27 days from sowing for 1970–1 and 1971–2 respectively. The number of ears/plant was 1·4 at the end of the growing season. Varieties differed in tillering, and LRN10 and Giza 155 produced more reproductive tillers than Falchetto and Mexipak. Nitrogen application increased tillering efficiency, i.e. ratio of fertile to total tillers produced. Only 26% of tillers appearing in the axil of the first true leaf (T1) and 10% of tillers in the axil of the second true leaf (T2) survived to produce ears. The high mortality of tillers was attributed to high air temperature prevailing during the growth period (33 °C by day; 18 °C by night). Eared tillers did not die and were self supporting because of the photosynthesis by the ear.Grain weight/tiller was positively correlated with tiller dry weight at heading, r= 0·76–0·96. Main shoots contributed about 81% of the total grain yield and 19% came from T1 and T2 tillers.


2015 ◽  
Vol 12 (18) ◽  
pp. 5455-5479 ◽  
Author(s):  
M. Portail ◽  
K. Olu ◽  
E. Escobar-Briones ◽  
J. C. Caprais ◽  
L. Menot ◽  
...  

Abstract. Understanding the ecological processes and connectivity of chemosynthetic deep-sea ecosystems requires comparative studies. In the Guaymas Basin (Gulf of California, Mexico), the presence of seeps and vents in the absence of a biogeographic barrier, and comparable sedimentary settings and depths offers a unique opportunity to assess the role of ecosystem-specific environmental conditions on macrofaunal communities. Six seep and four vent assemblages were studied, three of which were characterised by common major foundation taxa: vesicomyid bivalves, siboglinid tubeworms and microbial mats. Macrofaunal community structure at the family level showed that density, diversity and composition patterns were primarily shaped by seep- and vent-common abiotic factors including methane and hydrogen sulfide concentrations, whereas vent environmental specificities (higher temperature, higher metal concentrations and lower pH) were not significant. The type of substratum and the heterogeneity provided by foundation species were identified as additional structuring factors and their roles were found to vary according to fluid regimes. At the family level, seep and vent similarity reached at least 58 %. All vent families were found at seeps and each seep-specific family displayed low relative abundances (< 5 %). Moreover, 85 % of the identified species among dominant families were shared between seep and vent ecosystems. This study provides further support to the hypothesis of continuity among deep-sea seep and vent ecosystems.


1967 ◽  
Vol 69 (3) ◽  
pp. 317-327 ◽  
Author(s):  
L. Razoux Schultz ◽  
J. E. Jackson ◽  
R. C. Faulkner

In factorial experiments covering a range of sowing dates and insecticide treatments the numbers of fleabeetle, jassid and whitefly on cotton in the Sudan Gezira were shown to be strongly influenced by the date of sowing and the age of the crop.Attack by fleabeetle was most severe on cotton seedlings from July and early August sowings. Few fleabeetle were found on either more mature plants from these sowing dates or on seedlings from later sown cotton.Whitefly numbers were highest on late July and early August sown cotton. Peak numbers were attained attained in late September and October and then fell to very low levels in November irrespective of date of sowing.Jassid numbers were related both to plant age and to time of year, more being found on cotton sown, in July and early August early in the season and on later sown cotton later in the season. The highest numbers were found in November and December at which time populations were higher on cotton sown in mid-August or later than on earlier sown cotton.


2016 ◽  
Vol 4 ◽  
pp. 19-22
Author(s):  
Ambika Ghimire ◽  
Yubak Dhoj G.C. ◽  
Binod Baniya

Rice (Oryza sativa L.) is the second most important crop in the world after wheat and also the most important crop in Nepal. The production of rice is influenced by various biotic and abiotic factors. Temperature is the major constraint for the crop yield. The present experiment was conducted to study the impact of temperature on straw and crop productivity from June to October 2014. The experiment was conducted under temperature control chamber, in which temperature was elevated from the ambient level by 2ºC and 3ºC for the entire crop growth period. Grain and straw yield was measured using electronic weighing machine. Maturity of grain was 10 and 7 days earlier at elevated temperature by 3ºC and 2ºC respectively. Under similar condition of water depth, plant spacing, rice variety and soil nutrient, rise in temperature up to 2ºC is favorable for rice straw yield and crop productivity. Yield loss under elevated temperature by 3ºC is due to floret sterility. Further research on temperature resistance rice variety is necessary.


Sign in / Sign up

Export Citation Format

Share Document