scholarly journals Malus domestica: A Review on Nutritional Features, Chemical Composition, Traditional and Medicinal Value

Plants ◽  
2020 ◽  
Vol 9 (11) ◽  
pp. 1408
Author(s):  
Jiri Patocka ◽  
Kanchan Bhardwaj ◽  
Blanka Klimova ◽  
Eugenie Nepovimova ◽  
Qinghua Wu ◽  
...  

Fruit-derived bioactive substances have been spotlighted as a regulator against various diseases due to their fewer side effects compared to chemical drugs. Among the most frequently consumed fruits, apple is a rich source of nutritional molecules and contains high levels of bioactive compounds. The main structural classes of apple constituents include polyphenols, polysaccharides (pectin), phytosterols, and pentacyclic triterpenes. Also, vitamins and trace elements complete the nutritional features of apple fruit. There is now considerable scientific evidence that these bioactive substances present in apple and peel have the potential to improve human health, for example contributing to preventing cardiovascular disease, diabetes, inflammation, and cancer. This review will focus on the current knowledge of bioactive substances in apple and their medicinal value for human health.

Author(s):  
Juyong Brian Kim ◽  
Mary Prunicki ◽  
Francois Haddad ◽  
Christopher Dant ◽  
Vanitha Sampath ◽  
...  

Abstract The disease burden associated with air pollution continues to grow. The World Health Organization (WHO) estimates ≈7 million people worldwide die yearly from exposure to polluted air, half of which—3.3 million—are attributable to cardiovascular disease (CVD), greater than from major modifiable CVD risks including smoking, hypertension, hyperlipidemia, and diabetes mellitus. This serious and growing health threat is attributed to increasing urbanization of the world's populations with consequent exposure to polluted air. Especially vulnerable are the elderly, patients with pre‐existing CVD, and children. The cumulative lifetime burden in children is particularly of concern because their rapidly developing cardiopulmonary systems are more susceptible to damage and they spend more time outdoors and therefore inhale more pollutants. World Health Organization estimates that 93% of the world's children aged <15 years—1.8 billion children—breathe air that puts their health and development at risk. Here, we present growing scientific evidence, including from our own group, that chronic exposure to air pollution early in life is directly linked to development of major CVD risks, including obesity, hypertension, and metabolic disorders. In this review, we surveyed the literature for current knowledge of how pollution exposure early in life adversely impacts cardiovascular phenotypes, and lay the foundation for early intervention and other strategies that can help prevent this damage. We also discuss the need for better guidelines and additional research to validate exposure metrics and interventions that will ultimately help healthcare providers reduce the growing burden of CVD from pollution.


Author(s):  
D.Y. Bolgova ◽  
◽  
N.A. Tarasenko ◽  
Z.S. Mukhametova ◽  
◽  
...  

Nutrition is an important factor that affects human health. The use of plant proteins as various additives in food production has now been actively developed. The rich chemical composition of pea grains determines the possibility of application in the food industry. Peas are characterized by good assimilability and degree of digestion.


2020 ◽  
Vol 16 ◽  
Author(s):  
Anna Bobrus- Chociej ◽  
Natalia Wasilewska ◽  
Marta Flisiak- Jackiewicz ◽  
Dariusz Lebensztejn

: Nonalcoholic fatty liver disease (NAFLD) is a main cause of chronic liver disease in children. With the global obesity epidemic, the prevalence of NAFLD is increasing both in industrialized and developing countries. NAFLD is a multisystem disorder and a hepatic manifestation of the metabolic syndrome. Growing scientific evidence suggests that NAFLD is an independent risk factor for cardiovascular disease. This paper briefly describes the current knowledge concerning the association between NAFLD and cardiac dysfunction in children.


2020 ◽  
Author(s):  
Harshad Vijay Kulkarni ◽  
◽  
Michael Vega ◽  
Karen Johannesson ◽  
Robert Taylor ◽  
...  

2021 ◽  
Vol 10 (13) ◽  
pp. 2903
Author(s):  
Jiezhong Chen ◽  
Luis Vitetta

The gut microbiota is well known to exert multiple benefits on human health including protection from disease causing pathobiont microbes. It has been recognized that healthy intestinal microbiota is of great importance in the pathogenesis of COVID-19. Gut dysbiosis caused by various reasons is associated with severe COVID-19. Therefore, the modulation of gut microbiota and supplementation of commensal bacterial metabolites could reduce the severity of COVID-19. Many approaches have been studied to improve gut microbiota in COVID-19 including probiotics, bacterial metabolites, and prebiotics, as well as nutraceuticals and trace elements. So far, 19 clinical trials for testing the efficacy of probiotics and synbiotics in COVID-19 prevention and treatment are ongoing. In this narrative review, we summarize the effects of various approaches on the prevention and treatment of COVID-19 and discuss associated mechanisms.


Medicina ◽  
2021 ◽  
Vol 57 (7) ◽  
pp. 643
Author(s):  
Angela Saviano ◽  
Mattia Brigida ◽  
Alessio Migneco ◽  
Gayani Gunawardena ◽  
Christian Zanza ◽  
...  

Background and Objectives: Lactobacillus reuteri DSM 17938 (L. reuteri) is a probiotic that can colonize different human body sites, including primarily the gastrointestinal tract, but also the urinary tract, the skin, and breast milk. Literature data showed that the administration of L. reuteri can be beneficial to human health. The aim of this review was to summarize current knowledge on the role of L. reuteri in the management of gastrointestinal symptoms, abdominal pain, diarrhea and constipation, both in adults and children, which are frequent reasons for admission to the emergency department (ED), in order to promote the best selection of probiotic type in the treatment of these uncomfortable and common symptoms. Materials and Methods: We searched articles on PubMed® from January 2011 to January 2021. Results: Numerous clinical studies suggested that L. reuteri may be helpful in modulating gut microbiota, eliminating infections, and attenuating the gastrointestinal symptoms of enteric colitis, antibiotic-associated diarrhea (also related to the treatment of Helicobacter pylori (HP) infection), irritable bowel syndrome, inflammatory bowel disease, and chronic constipation. In both children and in adults, L. reuteri shortens the duration of acute infectious diarrhea and improves abdominal pain in patients with colitis or inflammatory bowel disease. It can ameliorate dyspepsia and symptoms of gastritis in patients with HP infection. Moreover, it improves gut motility and chronic constipation. Conclusion: Currently, probiotics are widely used to prevent and treat numerous gastrointestinal disorders. In our opinion, L. reuteri meets all the requirements to be considered a safe, well-tolerated, and efficacious probiotic that is able to contribute to the beneficial effects on gut-human health, preventing and treating many gastrointestinal symptoms, and speeding up the recovery and discharge of patients accessing the emergency department.


2021 ◽  
Vol 9 (3) ◽  
pp. 293
Author(s):  
Mauro Corriere ◽  
Lucía Soliño ◽  
Pedro Reis Costa

Natural high proliferations of toxin-producing microorganisms in marine and freshwater environments result in dreadful consequences at the socioeconomically and environmental level due to water and seafood contamination. Monitoring programs and scientific evidence point to harmful algal blooms (HABs) increasing in frequency and intensity as a result of global climate alterations. Among marine toxins, the okadaic acid (OA) and the related dinophysistoxins (DTX) are the most frequently reported in EU waters, mainly in shellfish species. These toxins are responsible for human syndrome diarrhetic shellfish poisoning (DSP). Fish, like other marine species, are also exposed to HABs and their toxins. However, reduced attention has been given to exposure, accumulation, and effects on fish of DSP toxins, such as OA. The present review intends to summarize the current knowledge of the impact of DSP toxins and to identify the main issues needing further research. From data reviewed in this work, it is clear that exposure of fish to DSP toxins causes a range of negative effects, from behavioral and morphological alterations to death. However, there is still much to be investigated about the ecological and food safety risks related to contamination of fish with DSP toxins.


2021 ◽  
Vol 97 ◽  
pp. 103754
Author(s):  
Naghmeh Soltani ◽  
Michel Marengo ◽  
Behnam Keshavarzi ◽  
Farid Moore ◽  
Peter S. Hooda ◽  
...  

2021 ◽  
Vol 6 (1) ◽  
Author(s):  
Bin Wang ◽  
Lei Zhang ◽  
Tong Dai ◽  
Ziran Qin ◽  
Huasong Lu ◽  
...  

AbstractEmerging evidence suggests that liquid–liquid phase separation (LLPS) represents a vital and ubiquitous phenomenon underlying the formation of membraneless organelles in eukaryotic cells (also known as biomolecular condensates or droplets). Recent studies have revealed evidences that indicate that LLPS plays a vital role in human health and diseases. In this review, we describe our current understanding of LLPS and summarize its physiological functions. We further describe the role of LLPS in the development of human diseases. Additionally, we review the recently developed methods for studying LLPS. Although LLPS research is in its infancy—but is fast-growing—it is clear that LLPS plays an essential role in the development of pathophysiological conditions. This highlights the need for an overview of the recent advances in the field to translate our current knowledge regarding LLPS into therapeutic discoveries.


Marine Drugs ◽  
2021 ◽  
Vol 19 (2) ◽  
pp. 113
Author(s):  
Marine Remize ◽  
Yves Brunel ◽  
Joana L. Silva ◽  
Jean-Yves Berthon ◽  
Edith Filaire

N-3 polyunsaturated fatty acids (n-3 PUFAs), and especially eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), are essential compounds for human health. They have been proven to act positively on a panel of diseases and have interesting anti-oxidative, anti-inflammatory or anti-cancer properties. For these reasons, they are receiving more and more attention in recent years, especially future food or feed development. EPA and DHA come mainly from marine sources like fish or seaweed. Unfortunately, due to global warming, these compounds are becoming scarce for humans because of overfishing and stock reduction. Although increasing in recent years, aquaculture appears insufficient to meet the increasing requirements of these healthy molecules for humans. One alternative resides in the cultivation of microalgae, the initial producers of EPA and DHA. They are also rich in biochemicals with interesting properties. After defining macro and microalgae, this review synthesizes the current knowledge on n-3 PUFAs regarding health benefits and the challenges surrounding their supply within the environmental context. Microalgae n-3 PUFA production is examined and its synthesis pathways are discussed. Finally, the use of EPA and DHA in food and feed is investigated. This work aims to define better the issues surrounding n-3 PUFA production and supply and the potential of microalgae as a sustainable source of compounds to enhance the food and feed of the future.


Sign in / Sign up

Export Citation Format

Share Document