scholarly journals Carbon Nanomaterials for Electro-Active Structures: A Review

Polymers ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 2946
Author(s):  
Weiguang Wang ◽  
Yanhao Hou ◽  
Dean Martinez ◽  
Darwin Kurniawan ◽  
Wei-Hung Chiang ◽  
...  

The use of electrically conductive materials to impart electrical properties to substrates for cell attachment proliferation and differentiation represents an important strategy in the field of tissue engineering. This paper discusses the concept of electro-active structures and their roles in tissue engineering, accelerating cell proliferation and differentiation, consequently leading to tissue regeneration. The most relevant carbon-based materials used to produce electro-active structures are presented, and their main advantages and limitations are discussed in detail. Particular emphasis is put on the electrically conductive property, material synthesis and their applications on tissue engineering. Different technologies, allowing the fabrication of two-dimensional and three-dimensional structures in a controlled way, are also presented. Finally, challenges for future research are highlighted. This review shows that electrical stimulation plays an important role in modulating the growth of different types of cells. As highlighted, carbon nanomaterials, especially graphene and carbon nanotubes, have great potential for fabricating electro-active structures due to their exceptional electrical and surface properties, opening new routes for more efficient tissue engineering approaches.

Materials ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 2992
Author(s):  
Tomasz Machałowski ◽  
Agnieszka Rusak ◽  
Benita Wiatrak ◽  
Katarzyna Haczkiewicz-Leśniak ◽  
Aneta Popiel ◽  
...  

Tissue engineering (TE) is a field of regenerative medicine that has been experiencing a special boom in recent years. Among various materials used as components of 3D scaffolds, naturally formed chitinous materials seem to be especially attractive because of their abundance, non-toxic and eco-friendly character. In this study, chitinous skeleton isolated from the marine sponge Aplysina fistularis (phylum: Porifera) was used for the first time as a support for the cultivation of murine fibroblasts (Balb/3T3), human dermal fibroblasts (NHDF), human keratinocyte (HaCaT), and human neuronal (SH-SY5Y) cells. Characterization techniques such as ATR FTIR, TGA, and μCT, clearly indicate that an interconnected macro-porous, thermostable, pure α-chitin scaffold was obtained after alkali–acid treatment of air-dried marine sponge. The biocompatibility of the naturally formed chitin scaffolds was confirmed by cell attachment and proliferation determined by various microscopic methods (e.g., SEM, TEM, digital microscopy) and specific staining. Our observations show that fibroblasts and keratinocytes form clusters on scaffolds that resemble a skin structure, including the occurrence of desmosomes in keratinocyte cells. The results obtained here suggest that the chitinous scaffold from the marine sponge A. fistularis is a promising biomaterial for future research about tissues regeneration.


2016 ◽  
Vol 19 (2) ◽  
pp. 93-100
Author(s):  
Lalita El Milla

Scaffolds is three dimensional structure that serves as a framework for bone growth. Natural materials are often used in synthesis of bone tissue engineering scaffolds with respect to compliance with the content of the human body. Among the materials used to make scafffold was hydroxyapatite, alginate and chitosan. Hydroxyapatite powder obtained by mixing phosphoric acid and calcium hydroxide, alginate powders extracted from brown algae and chitosan powder acetylated from crab. The purpose of this study was to examine the functional groups of hydroxyapatite, alginate and chitosan. The method used in this study was laboratory experimental using Fourier Transform Infrared (FTIR) spectroscopy for hydroxyapatite, alginate and chitosan powders. The results indicated the presence of functional groups PO43-, O-H and CO32- in hydroxyapatite. In alginate there were O-H, C=O, COOH and C-O-C functional groups, whereas in chitosan there were O-H, N-H, C=O, C-N, and C-O-C. It was concluded that the third material containing functional groups as found in humans that correspond to the scaffolds material in bone tissue engineering.


Pharmaceutics ◽  
2018 ◽  
Vol 10 (4) ◽  
pp. 272 ◽  
Author(s):  
Patricia Diaz-Rodriguez ◽  
Mirian Sánchez ◽  
Mariana Landin

The mimesis of biological systems has been demonstrated to be an adequate approach to obtain tissue engineering scaffolds able to promote cell attachment, proliferation, and differentiation abilities similar to those of autologous tissues. Bioceramics are commonly used for this purpose due to their similarities to the mineral component of hard tissues as bone. Furthermore, biomimetic scaffolds are frequently loaded with diverse therapeutic molecules to enhance their biological performance, leading to final products with advanced functionalities. In this review, we aim to describe the already developed bioceramic-based biomimetic systems for drug loading and local controlled release. We will discuss the mechanisms used for the inclusion of therapeutic molecules on the designed systems, paying special attention to the identification of critical parameters that modulate drug loading and release kinetics on these scaffolds.


2019 ◽  
Vol 33 (8) ◽  
pp. 1128-1144 ◽  
Author(s):  
Vahideh Raeisdasteh Hokmabad ◽  
Soodabeh Davaran ◽  
Marziyeh Aghazadeh ◽  
Reza Rahbarghazi ◽  
Roya Salehi ◽  
...  

The major challenge of tissue regeneration is to develop three dimensional scaffolds with suitable properties which would mimic the natural extracellular matrix to induce the adhesion, proliferation, and differentiation of cells. Several materials have been used for the preparation of the scaffolds for bone regeneration. In this study, novel ethyl cellulose-grafted-poly (ɛ-caprolactone) (EC-g-PCL)/alginate scaffolds with different contents of nano-hydroxyapatite were prepared by combining electrospinning and freeze-drying methods in order to provide nanofibrous/macroporous structures with good mechanical properties. For this aim, EC-g-PCL nanofibers were obtained with electrospinning, embedded layer-by-layer in alginate solutions containing nano-hydroxyapatite particles, and finally, these constructions were freeze-dried. The scaffolds possess highly porous structures with interconnected pore network. The swelling, porosity, and degradation characteristics of the EC-g-PCL/alginate scaffolds were decreased with the increase in nano-hydroxyapatite contents, whereas increases in the in-vitro biomineralization and mechanical strength were observed as the nano-hydroxyapatite content was increased. The cell response to EC-g-PCL/alginate scaffolds with/or without nano-hydroxyapatite was investigated using human dental pulp stem cells (hDPSCs). hDPSCs displayed a high adhesion, proliferation, and differentiation on nano-hydroxyapatite-incorporated EC-g-PCL/alginate scaffolds compared to pristine EC-g-PCL/alginate scaffold. Overall, these results suggested that the EC-g-PCL/alginate-HA scaffolds might have potential applications in bone tissue engineering.


2019 ◽  
Vol 9 (17) ◽  
pp. 3540 ◽  
Author(s):  
Ferdows Afghah ◽  
Caner Dikyol ◽  
Mine Altunbek ◽  
Bahattin Koc

Melt electrospinning writing has been emerged as a promising technique in the field of tissue engineering, with the capability of fabricating controllable and highly ordered complex three-dimensional geometries from a wide range of polymers. This three-dimensional (3D) printing method can be used to fabricate scaffolds biomimicking extracellular matrix of replaced tissue with the required mechanical properties. However, controlled and homogeneous cell attachment on melt electrospun fibers is a challenge. The combination of melt electrospinning writing with other tissue engineering approaches, called hybrid biomanufacturing, has introduced new perspectives and increased its potential applications in tissue engineering. In this review, principles and key parameters, challenges, and opportunities of melt electrospinning writing, and particularly, recent approaches and materials in this field are introduced. Subsequently, hybrid biomanufacturing strategies are presented for improved biological and mechanical properties of the manufactured porous structures. An overview of the possible hybrid setups and applications, future perspective of hybrid processes, guidelines, and opportunities in different areas of tissue/organ engineering are also highlighted.


Author(s):  
I. M. Sebastine ◽  
D. J. Williams

Tissue engineering aims to restore the complex function of diseased tissue using cells and scaffold materials. Tissue engineering scaffolds are three-dimensional (3D) structures that assist in the tissue engineering process by providing a site for cells to attach, proliferate, differentiate and secrete an extra-cellular matrix, eventually leading cells to form a neo-tissue of predetermined, three-dimensional shape and size. For a scaffold to function effectively, it must possess the optimum structural parameters conducive to the cellular activities that lead to tissue formation; these include cell penetration and migration into the scaffold, cell attachment onto the scaffold substrate, cell spreading and proliferation and cell orientation. In vivo, cells are organized in functional tissue units that repeat on the order of 100 μm. Fine scaffold features have been shown to provide control over attachment, migration and differentiation of cells. In order to design such 3D featured constructs effectively understanding the biological response of cells across length scales from nanometer to millimeter range is crucial. Scaffold biomaterials may need to be tailored at three different length scales: nanostructure (<1μm), microstructure (<20–100μm), and macrostructure (>100μm) to produce biocompatible and biofunctional scaffolds that closely resemble the extracellular matrix (ECM) of the natural tissue environment and promote cell adhesion, attachment, spreading, orientation, rate of movement, and activation. Identification of suitable fabrication techniques for manufacturing scaffolds with the required features at multiple scales is a significant challenge. This review highlights the effect and importance of the features of scaffolds that can influence the behaviour of cells/tissue at different length scales in vitro to increase our understanding of the requirements for the manufacture of functional 3D tissue constructs.


2016 ◽  
Vol 2016 ◽  
pp. 1-8 ◽  
Author(s):  
Birong Wang ◽  
Qinggang Hu ◽  
Tao Wan ◽  
Fengxiao Yang ◽  
Le Cui ◽  
...  

Galactosylated chitosan (CTS) has been widely applied in liver tissue engineering as scaffold. However, the influence of degree of substitution (DS) of galactose moieties on cell attachment and mechanical stability is not clear. In this study, we synthesized the lactose-modified chitosan (Lact-CTS) with various DS of galactose moieties by Schiff base reaction and reducing action of NaBH4, characterized by FTIR. The DS of Lact-CTS-1, Lact-CTS-2, and Lact-CTS-3 was 19.66%, 48.62%, and 66.21% through the method of potentiometric titration. The cell attachment of hepatocytes on the CTS and Lact-CTS films was enhanced accompanied with the increase of galactose moieties on CTS chain because of the galactose ligand-receptor recognition; however, the mechanical stability of Lact-CTS-3 was reduced contributing to the extravagant hydrophilicity, which was proved using the sessile drop method. Then, the three-dimensional Lact-CTS scaffolds were fabricated by freezing-drying technique. The SEM images revealed the homogeneous pore bearing the favorable connectivity and the pore sizes of scaffolds with majority of 100 μm; however, the extract solution of Lact-CTS-3 scaffold significantly damaged red blood cells by hemolysis assay, indicating that exorbitant DS of Lact-CTS-3 decreased the mechanical stability and increased the toxicity. To sum up, the Lact-CTS-2 with 48.62% of galactose moieties could facilitate the cell attachment and possess great biocompatibility and mechanical stability, indicating that Lact-CTS-2 was a promising material for liver tissue engineering.


Author(s):  
Hui Wang ◽  
Zhonghan Wang ◽  
He Liu ◽  
Jiaqi Liu ◽  
Ronghang Li ◽  
...  

Although there have been remarkable advances in cartilage tissue engineering, construction of irregularly shaped cartilage, including auricular, nasal, tracheal, and meniscus cartilages, remains challenging because of the difficulty in reproducing its precise structure and specific function. Among the advanced fabrication methods, three-dimensional (3D) printing technology offers great potential for achieving shape imitation and bionic performance in cartilage tissue engineering. This review discusses requirements for 3D printing of various irregularly shaped cartilage tissues, as well as selection of appropriate printing materials and seed cells. Current advances in 3D printing of irregularly shaped cartilage are also highlighted. Finally, developments in various types of cartilage tissue are described. This review is intended to provide guidance for future research in tissue engineering of irregularly shaped cartilage.


2019 ◽  
Vol 6 (3) ◽  
pp. 67 ◽  
Author(s):  
Victor Häussling ◽  
Sebastian Deninger ◽  
Laura Vidoni ◽  
Helen Rinderknecht ◽  
Marc Ruoß ◽  
...  

Human adipose-derived mesenchymal stem/stromal cells (Ad-MSCs) have great potential for bone tissue engineering. Cryogels, mimicking the three-dimensional structure of spongy bone, represent ideal carriers for these cells. We developed poly(2-hydroxyethyl methacrylate) cryogels, containing hydroxyapatite to mimic inorganic bone matrix. Cryogels were additionally supplemented with different types of proteins, namely collagen (Coll), platelet-rich plasma (PRP), immune cells-conditioned medium (CM), and RGD peptides (RGD). The different protein components did not affect scaffolds’ porosity or water-uptake capacity, but altered pore size and stiffness. Stiffness was highest in scaffolds with PRP (82.3 kPa), followed by Coll (55.3 kPa), CM (45.6 kPa), and RGD (32.8 kPa). Scaffolds with PRP, CM, and Coll had the largest pore diameters (~60 µm). Ad-MSCs were osteogenically differentiated on these scaffolds for 14 days. Cell attachment and survival rates were comparable for all four scaffolds. Runx2 and osteocalcin levels only increased in Ad-MSCs on Coll, PRP and CM cryogels. Osterix levels increased slightly in Ad-MSCs differentiated on Coll and PRP cryogels. With differentiation alkaline phosphatase activity decreased under all four conditions. In summary, besides Coll cryogel our PRP cryogel constitutes as an especially suitable carrier for bone tissue engineering. This is of special interest, as this scaffold can be generated with patients’ PRP.


Materials ◽  
2019 ◽  
Vol 12 (14) ◽  
pp. 2296 ◽  
Author(s):  
Alexandra Roi ◽  
Lavinia Cosmina Ardelean ◽  
Ciprian Ioan Roi ◽  
Eugen-Radu Boia ◽  
Simina Boia ◽  
...  

The advancements made in biomaterials have an important impact on oral tissue engineering, especially on the bone regeneration process. Currently known as the gold standard in bone regeneration, grafting procedures can sometimes be successfully replaced by a biomaterial scaffold with proper characteristics. Whether natural or synthetic polymers, biomaterials can serve as potential scaffolds with major influences on cell adhesion, proliferation and differentiation. Continuous research has enabled the development of scaffolds that can be specifically designed to replace the targeted tissue through changes in their surface characteristics and the addition of growth factors and biomolecules. The progress in tissue engineering is incontestable and research shows promising contributions to the further development of this field. The present review aims to outline the progress in oral tissue engineering, the advantages of biomaterial scaffolds, their direct implication in the osteogenic process and future research directions.


Sign in / Sign up

Export Citation Format

Share Document