scholarly journals Synthesis and Evaluation of HSOD/PSF and SSOD/PSF Membranes for Removal of Phenol from Industrial Wastewater

Polymers ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1253
Author(s):  
Rivoningo Ngobeni ◽  
Olawumi Sadare ◽  
Michael O. Daramola

Phenol is regarded as a major pollutant, as the toxicity levels are in the range of 9–25 mg/L for aquatic life and humans. This study embedded silica sodalite (SSOD) and hydroxy sodalite (HSOD) nanoparticles into polysulfone (PSF) for enhancement of its physicochemical properties for treatment of phenol-containing wastewater. The pure polysulfone membranes and sodalite-infused membranes were synthesized via phase inversion. To check the surface morphology, surface hydrophilicity, surface functionality, surface roughness and measure the mechanical properties of the membranes, characterization techniques such as Scanning Electron Microscope (SEM), contact angle measurements, Fourier Transform Infrared, Atomic Force Microscopy (AFM) nanotensile tests were used, respectively. The morphology of the composite membranes showed incorporation of the sodalite crystals decreased the membrane porosity. The results obtained showed the highest contact angle of 83.81° for pure PSF as compared to that of the composite membranes. The composite membranes with 10 wt.% HSOD/PSF and 10 wt.% SSOD/PSF showed mechanical enhancement as indicated by a 20.96% and 19.69% increase in ultimate tensile strength, respectively compared to pure PSF. The performance evaluation of the membranes was done using a dead-end filtration cell at varied feed pressure. Synthetic phenol-containing wastewater was prepared by dissolving one gram of phenol crystals in 1 L of deionized water and used in this study. Results showed higher flux for sodalite infused membranes than pure PSF for both pure and phenol-containing water. However, pure PSF showed the highest phenol rejection of 93.55% as compared to 63.65% and 64.75% achieved by 10 wt.% HSOD/PSF and 10 wt.% SSOD/PSF, respectively. The two sodalite infused membranes have shown enhanced mechanical properties and permeability during treatment of phenol in synthetic wastewater.

2017 ◽  
Vol 30 (4) ◽  
pp. 446-455 ◽  
Author(s):  
Zehan Liu ◽  
Long Pang ◽  
Qing Li ◽  
Shulai Zhang ◽  
Jing Li ◽  
...  

A series of co-polyimide (PI)/modified β-cyclodextrin (β-CD) composites were successfully fabricated from anhydride-terminated PI and (3-aminopropyl)triethoxysilane-modified β-CD (β-ACD). Co-PI was prepared from 4,4′-oxydianiline, 4,4′-(hexafluoroisopropylidene) diphthalic anhydride, and 2,2-bis[4-(3,4-dicarboxyphenoxy)phenyl]propane dianhydride by chemical imidization. Different amounts of β-ACD (0, 1, 3, 5, and 7 wt%) were introduced into co-PI via strong covalent interactions between the terminal anhydride and amino groups. The structures and properties of the composites were characterized by means of Fourier transform infrared spectroscopy, X-ray diffraction, scanning electron microscopy, thermal gravimetric analysis, differential scanning calorimetry, dynamic thermomechanical analysis, mechanical properties tests, and contact angle tests. The results showed that β-ACD was successfully grafted on the PI segment. The composite films showed good thermal stability, glass transition temperatures between 244°C and 254°C, and 10% weight loss at temperatures of 514°C–545°C and 506°C–538°C in nitrogen and air atmosphere, respectively. They also exhibited excellent mechanical properties with tensile strength, tensile modulus, and elongation at break values of 78–111 MPa, 1.14–2.05 GPa, and 8–17%, respectively. All of these values were maximized at a β-ACD content of 1 wt%. The water uptake of the composites films was more than 1%, indicating that the addition of β-ACD can enhance the water absorption of PI films. All of these composite films are porous, and the contact angle indicated that the addition of β-ACD increased the hydrophilicity of the composite film. When the β-ACD doping content reached 7 wt%, the contact angle reached a minimum of 63°. All of the membranes were thermally annealed at 300°C for 1 h, after which gas adsorption tests showed that the composite films have enhanced CO2/CH4 selectivity, which can reach 12.7 (308 K).


2000 ◽  
Vol 39 (Part 1, No. 6B) ◽  
pp. 3711-3716 ◽  
Author(s):  
Hatsuki Shiga ◽  
Yukako Yamane ◽  
Etsuro Ito ◽  
Kazuhiro Abe ◽  
Kazushige Kawabata ◽  
...  

Coatings ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 652
Author(s):  
Divine Sebastian ◽  
Chun-Wei Yao ◽  
Lutfun Nipa ◽  
Ian Lian ◽  
Gary Twu

In this work, a mechanically durable anticorrosion superhydrophobic coating is developed using a nanocomposite coating solution composed of silica nanoparticles and epoxy resin. The nanocomposite coating developed was tested for its superhydrophobic behavior using goniometry; surface morphology using scanning electron microscopy and atomic force microscopy; elemental composition using energy dispersive X-ray spectroscopy; corrosion resistance using atomic force microscopy; and potentiodynamic polarization measurements. The nanocomposite coating possesses hierarchical micro/nanostructures, according to the scanning electron microscopy images, and the presence of such structures was further confirmed by the atomic force microscopy images. The developed nanocomposite coating was found to be highly superhydrophobic as well as corrosion resistant, according to the results from static contact angle measurement and potentiodynamic polarization measurement, respectively. The abrasion resistance and mechanical durability of the nanocomposite coating were studied by abrasion tests, and the mechanical properties such as reduced modulus and Berkovich hardness were evaluated with the aid of nanoindentation tests.


e-Polymers ◽  
2020 ◽  
Vol 20 (1) ◽  
pp. 430-442 ◽  
Author(s):  
Rajdeep Mukherjee ◽  
Arun Kumar Mandal ◽  
Susanta Banerjee

AbstractSulfopropylated polysilsesquioxane and –COOH containing fluorinated sulfonated poly(arylene ether sulfone) composite membranes (SPAES-SS-X) have been prepared via an in situ sol–gel reaction through the solution casting technique. The composite membranes showed excellent thermal and chemical stability, compared to the pristine SPAES membrane. The uniform dispersion of the sulfonated SiOPS nanoparticles on the polymer matrix was observed from the scanning electron microscope images. Atomic force microscopy and transmission electron microscopy images indicated significantly better phase-separated morphology and connectivity of the ionic domains of the composite membranes than the pristine SPAES membrane. The composite membranes showed considerable improvement in proton conductivity and oxidative stability than the pristine copolymer membrane under similar test conditions.


2021 ◽  
Vol 56 (15) ◽  
pp. 9196-9208
Author(s):  
Piotr Borysiuk ◽  
Piotr Boruszewski ◽  
Radosław Auriga ◽  
Leszek Danecki ◽  
Alicja Auriga ◽  
...  

AbstractIn this study, wood plastic composites (WPC) made of poly(lactic acid) PLA and a bark-filler were manufactured. Two degrees of bark comminution (10–35 mesh and over 35 mesh) and varied content of bark (40, 50 and 60%) were investigated. The studied panels were compared with analogically manufactured HDPE boards. The manufacture of composites involved two stages: at first, WPC granules with the appropriate formulation were produced using the extruder (temperatures in individual extruder sections were 170–180 °C) and crushing using a hammer mill after cooling the extruded composite; secondly, the obtained granulate was used to produce boards with nominal dimensions of 300 × 300 × 2.5 mm3 by flat pressing in a mold, using a single daylight press at a temperature 200 °C. The study proved that comminuted bark can be applied as a filler in PLA composites. However, an increase in bark content decreased mechanical properties (MOR, MOE) and deteriorated humidity resistance (high TS and WA) of the panels. Along with the increase in bark content, an increase in the contact angle of the composite surfaces and a decrease in the total surface energy were noted. It was also found that PLA composites have higher strength parameters and lower moisture resistance compared to HDPE composites with the same bark content. Graphical abstract


Molecules ◽  
2021 ◽  
Vol 26 (6) ◽  
pp. 1661
Author(s):  
Katarzyna Adamiak ◽  
Katarzyna Lewandowska ◽  
Alina Sionkowska

Collagen films are widely used as adhesives in medicine and cosmetology. However, its properties require modification. In this work, the influence of salicin on the properties of collagen solution and films was studied. Collagen was extracted from silver carp skin. The rheological properties of collagen solutions with and without salicin were characterized by steady shear tests. Thin collagen films were prepared by solvent evaporation. The structure of films was researched using infrared spectroscopy. The surface properties of films were investigated using Atomic Force Microscopy (AFM). Mechanical properties were measured as well. It was found that the addition of salicin modified the roughness of collagen films and their mechanical and rheological properties. The above-mentioned parameters are very important in potential applications of collagen films containing salicin.


2021 ◽  
pp. 009524432110290
Author(s):  
Mukaddes Sevval Cetin ◽  
Ozan Toprakci ◽  
Omer Suat Taskin ◽  
Abdullah Aksu ◽  
Hatice Aylin Karahan Toprakci

This study focuses on the fabrication and characterization of vermiculite-filled flexible polymer composites. Exfoliated vermiculite was incorporated into triblock thermoplastic elastomer copolymer, styrene- b-(ethylene- co-butylene)- b-styrene (SEBS), at various levels from 1 to 15 wt% by a high shear mixer. The composite films were obtained by the combination of solvent casting and compression molding. The morphological, structural, thermal, and mechanical properties and contact angle of the composites were determined. Some micro-morphological differences were observed between the samples and the difference was assumed to be caused by high shear mixing and filler concentration. High shear mixing was found effective in terms of the detachment of vermiculite layers at all concentrations. However, at low filler loading, that behavior was more obvious. At 1 wt% filler concentration, mechanical properties increased that was probably caused by good filler-matrix interaction stemmed from smaller particle size. At higher vermiculite concentrations, fillers found to show agglomerations that led to a decrease in mechanical strength and strain at break. Elastic and secant modulus showed an increasing trend. Contact angle measurements were carried out to determine the oleophilic character of the samples. An increase in the vermiculite content resulted in higher oleophilic character and the lowest contact angle was obtained at 15 wt% VMT loading. In addition to these, thermal stability, thermal dimensional stability and flame retardancy were improved by the incorporation of VMT. 15 wt% vermiculite-filled sample showed the best performance in terms of thermal stability and flame retardancy.


Nanomaterials ◽  
2019 ◽  
Vol 9 (6) ◽  
pp. 859
Author(s):  
Yu Zang ◽  
Toshiki Aoki ◽  
Masahiro Teraguchi ◽  
Takashi Kaneko ◽  
Hongge Jia ◽  
...  

Two kinds of novel nanoporous polycondensates (sc(Rf)) have been synthesized by two new preparation methods consisting of polycondensation and highly selective photocyclicaromataization of 1/3 helical cis-cis polyphenylacetylenes with polymerizable groups. By the original methods, new well-defined sheet polymers having nanopores or nanospaces have been synthesized for the first time. Their composite membranes, containing small amounts (1.0 wt%) of sc(Rf), had ultrahigh oxygen permeability (Po2 > 1000 barrer), and their plots were beyond the Robeson’s upper bound line in the graph of oxygen permselectivity (α = Po2/PN2) versus Po2. Both α and Po2 values were enhanced by adding only small amounts (1.0 wt%) of sc(Rf). One of the sc(Rf)s synthesized on the base membrane surface showed the best performance, i.e., Po2 = 5300 barrer and α = 2.5. The membrane surface was effectively covered by sc(Rf), judging from the contact angle values. It is thought that nanopores and nanospaces created in and between sc(Rf) molecules played an important role for the enhancement of both α and Po2/PN2.


Crystals ◽  
2020 ◽  
Vol 10 (8) ◽  
pp. 645
Author(s):  
Myung-Gyun Baek ◽  
Johng-Eon Shin ◽  
Dong-Hyun Hwang ◽  
Sung-Hoon Kim ◽  
Hong-Gyu Park ◽  
...  

Herein, we examined changes in the interfacial properties of organic light-emitting diodes when n-decyltrimethoxysilane (CH3SAM) was deposited on the surface of an indium tin oxide (ITO) electrode for various deposition times. It was revealed that the interfacial properties varied with deposition time. As the latter increased, so did the measured value of the contact angle, and ITO substrate exhibited a lower wettability. The contact angle measurements for bare ITO at 1, 10, 30, and 90 min were 57.41°, 63.43°, 73.76°, 81.47°, respectively, and the highest value obtained was 93.34°. In addition, the average roughness and work function of the ITO were measured using atomic force microscopy and X-ray photoelectron spectroscopy. As the deposition time of CH3SAM on the ITO substrates increased, it was evident that the former was well aligned with the latter, improving surface modification. The work function of CH3SAM, modified on the ITO substrates, improved by approximately 0.11 eV from 5.05–5.16 eV. The introduction of CH3SAM to the ITO revealed the ease of adjustment of the characteristics of ITO substrates.


Processes ◽  
2020 ◽  
Vol 8 (3) ◽  
pp. 329
Author(s):  
Tan Yi ◽  
Minghui Qi ◽  
Qi Mo ◽  
Lijie Huang ◽  
Hanyu Zhao ◽  
...  

Composite films of polybutylene adipate terephthalate (PBAT) were prepared by adding thermoplastic starch (TPS) (TPS/PBAT) and nano-zinc oxide (nano-ZnO) (TPS/PBAT/nano-ZnO). The changes of surface morphology, thermal properties, crystal types and functional groups of starch during plasticization were analyzed by scanning electron microscopy, synchronous thermal analysis, X-ray diffraction, infrared spectrometry, mechanical property tests, and contact Angle and transmittance tests. The relationship between the addition of TPS and the tensile strength, transmittance, contact angle, water absorption, and water vapor barrier of the composite film, and the influence of nano-ZnO on the mechanical properties and contact angle of the 10% TPS/PBAT composite film. Experimental results show that, after plasticizing, the crystalline form of starch changed from A-type to V-type, the functional group changed and the lipophilicity increased; the increase of TPS content, the light transmittance and mechanical properties of the composite membrane decreased, while the water vapor transmittance and water absorption increased. The mechanical properties of the composite can be significantly improved by adding nano-ZnO at a lower concentration (optimum content is 1 wt%).


Sign in / Sign up

Export Citation Format

Share Document