scholarly journals Quality of Surface Texture and Mechanical Properties of PLA and PA-Based Material Reinforced with Carbon Fibers Manufactured by FDM and CFF 3D Printing Technologies

Polymers ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 1671
Author(s):  
Mohd Shahneel Saharudin ◽  
Jiri Hajnys ◽  
Tomasz Kozior ◽  
Damian Gogolewski ◽  
Paweł Zmarzły

The paper presents the results of mechanical tests of models manufactured with two 3D printing technologies, FDM and CFF. Both technologies use PLA or PA-based materials reinforced with carbon fibers. The work includes both uniaxial tensile tests of the tested materials and metrological measurements of surfaces produced with two 3D printing technologies. The test results showed a significant influence of the type of technology on the strength of the models built and on the quality of the technological surface layer. After the analysis of the parameters of the primary profile, roughness and waviness, it can be clearly stated that the quality of the technological surface layer is much better for the models made with the CFF technology compared to the FDM technology. Furthermore, the tensile strength of the models manufactured of carbon fiber-enriched material is much higher for samples made with CFF technology compared to FDM.

Materials ◽  
2020 ◽  
Vol 13 (21) ◽  
pp. 5042
Author(s):  
Jaeyoung Kwon ◽  
Junhyeok Ock ◽  
Namkug Kim

3D printing technology has been extensively applied in the medical field, but the ability to replicate tissues that experience significant loads and undergo substantial deformation, such as the aorta, remains elusive. Therefore, this study proposed a method to imitate the mechanical characteristics of the aortic wall by 3D printing embedded patterns and combining two materials with different physical properties. First, we determined the mechanical properties of the selected base materials (Agilus and Dragonskin 30) and pattern materials (VeroCyan and TPU 95A) and performed tensile testing. Three patterns were designed and embedded in printed Agilus–VeroCyan and Dragonskin 30–TPU 95A specimens. Tensile tests were then performed on the printed specimens, and the stress-strain curves were evaluated. The samples with one of the two tested orthotropic patterns exceeded the tensile strength and strain properties of a human aorta. Specifically, a tensile strength of 2.15 ± 0.15 MPa and strain at breaking of 3.18 ± 0.05 mm/mm were measured in the study; the human aorta is considered to have tensile strength and strain at breaking of 2.0–3.0 MPa and 2.0–2.3 mm/mm, respectively. These findings indicate the potential for developing more representative aortic phantoms based on the approach in this study.


2010 ◽  
Vol 4 (4) ◽  
pp. 329-337
Author(s):  
Fabio Pereira ◽  
◽  
Fabiana Vieira ◽  
Luiz de Castro ◽  
Ricardo Michel ◽  
...  

In this work the influence of different configurations in the sample preparation process on commercial polyacrylonitrile-based carbon fibers mechanical tests were studied. Mechanical properties, such as tensile strength, Young’s modulus, elongation and Weibull modulus, were evaluated. The results showed that all sample preparation steps may have strong influence on the results.


2021 ◽  
Author(s):  
Budi Arifvianto ◽  
Teguh Nur Iman ◽  
Benidiktus Tulung Prayoga ◽  
Rini Dharmastiti ◽  
Urip Agus Salim ◽  
...  

Abstract Fused filament fabrication (FFF) has become one of the most popular, practical, and low-cost additive manufacturing techniques for fabricating geometrically-complex thermoplastic polyurethane (TPU) elastomer. However, there are still some uncertainties concerning the relationship between several operating parameters applied in this technique and the mechanical properties of the processed material. In this research, the influences of extruder temperature and raster orientation on the mechanical properties of the FFF-processed TPU elastomer were studied. A series of uniaxial tensile tests was carried out to determine tensile strength, strain, and elastic modulus of TPU elastomer that had been printed with various extruder temperatures, i.e., 190–230 °C, and raster angles, i.e., 0–90°. Thermal and chemical characterizations were also conducted to support the analysis in this research. The results obviously showed the ductile and elastic characteristics of the FFF-processed TPU, with specific tensile strength and strain that could reach up to 39 MPa and 600%, respectively. The failure mechanisms operating on the FFF-processed TPU and the result of stress analysis by using the developed Mohr’s circle are also discussed in this paper. In conclusion, the extrusion temperature of 200 °C and raster angle of 0° could be preferred to be applied in the FFF process to achieve high strength and ductile TPU elastomer.


2007 ◽  
Vol 26-28 ◽  
pp. 19-22
Author(s):  
Midori Komada ◽  
Yoshikazu Kuroda ◽  
Ryo Murakami ◽  
Noriyuki Tsuchida ◽  
Yasunori Harada ◽  
...  

Microstructure and mechanical properties of high nitrogen steels whose chemical composition were Fe-17Cr-12Mn-3Mo and that was produced by using metal injection molding method and nitrogen absorption methods were examined. A compact which is furnace cooled from 1573 K has a brittle surface layer with high chromium and nitrogen contents but the surface layer disappears when the compact is held at 1473 K. The compact which is furnace cooled at 1473 K is observed precipitates in the grains and the grain boundary, while the compact which is quenched at 1473 K shows homogeneous microstructure. In the heat treatments at 1473 K for 2, 5, and 10 h, the nitrogen content becomes higher with increasing of holding time. In the holding times of 5 and 10 h, the microstructure is austenite. In the tensile tests, tensile strength becomes larger with increasing of nitrogen content. In the specimen which is conducted the heat treatment at 1473 K for 10 h, tensile strength is about 1,000 MPa and elongation is 80 %, which shows better balance of strength and elongation than SUS304 and SUS316 steels.


2019 ◽  
Vol 17 (1) ◽  
pp. 37
Author(s):  
Muas M ◽  
Muhammad Arsyad Suyuti ◽  
Rasul Rasul ◽  
Patta Hajji

The purpose of this research is to know the mechanical properties of the welds due to the current variation of welding joint API 5L using TIG and SMAW welding root methods. Preparation of specimens of pipe API 5L PSL1 grade X56 (Ø 177.8 mm, length 200 mm, width 7 mm), then specimens preparation were made in a single V 600, root gap 2mm, root face 2mm. Filling the welding roots with TIG welding and SMAW using electrodes E7018 with a current variation 70A, 80A, 90A. Mechanical tests consist of tensile, bending and hard test. The results showed that the quality of a good TIG root weld at 70A, the highest tensile strength of the weld joint 52.27 kgf/mm2 (70A), the highest hardnest 164,217 HRB (90A), the bending strength 1.123,061 N/mm2 (70A) using face bend method and 1,172,959 N/mm2 with root bend. In SMAW root welding, the highest tensile strength 54.27 kgf/mm2 (70 A) , the highest hardnest  158.717 HRB (70 A), the highest bending strength 1.115,611 N/mm2 (70 A) using face bend method, and 1.161,748 N/ mm2 with root bend. 


2015 ◽  
Vol 1129 ◽  
pp. 169-176
Author(s):  
Sunhee Hong ◽  
Wan Ki Kim

This study is to examine and clarify the quality of polymer-modified mortars using a VA/E/MMA terpolymer powder as compared with polymer-modified mortars using a VAE copolymer powder. Polymer-modified mortars using general commercial redispersible polymer powders are prepared with various polymer-cement ratios, and tested for flexural and compressive strengths, tensile strength, water absorption, chloride ion penetration, carbonation and pore size distribution by mercury porosimetry. Overall, the properties of polymer-modified mortars using a VA/E/MMA terpolymer powder were superior to those of polymer-modified mortars using a VAE copolymer powder. And VA/E/MMA terpolymer powder-modified mortars showed significantly improved mechanical properties and durability in comparison with unmodified mortar. It is concluded from the test results that the modification of cement mortar with redispersible polymer powder improves the properties of unmodified mortar, and VA/E/MMA terpolymer powder has higher quality than VAE copolymer powder.


2018 ◽  
Vol 64 (No. 4) ◽  
pp. 202-208
Author(s):  
Margus Arak ◽  
Kaarel Soots ◽  
Marge Starast ◽  
Jüri Olt

In order to model and optimise the structural parameters of the working parts of agricultural machines, including harvesting machines, the mechanical properties of the culture harvested must be known. The purpose of this article is to determine the mechanical properties of the blueberry plant’s stem; more precisely the tensile strength and consequent elastic modulus E. In order to achieve this goal, the measuring instrument Instron 5969L2610 was used and accompanying software BlueHill 3 was used for analysing the test results. The tested blueberry plant’s stems were collected from the blueberry plantation of the Farm Marjasoo. The diameters of the stems were measured, test units were prepared, tensile tests were performed, tensile strength was determined and the elastic modulus was obtained. Average value of the elastic modulus of the blueberry (Northblue) plant’s stem remained in the range of 1268.27–1297.73 MPa.


Materials ◽  
2021 ◽  
Vol 15 (1) ◽  
pp. 1
Author(s):  
Andrzej Ambroziak ◽  
Paweł Kłosowski

The impact of water-induced degradation on the mechanical properties of the chosen two PTFE-coated, glass threads woven fabrics is investigated in this paper. The paper begins with a survey of literature concerning the investigation and determination of coated woven fabric properties. The authors carried out the uniaxial tensile tests with an application of flat and curved grips to establish the proper values of the ultimate tensile strength and the longitudinal stiffness of groups of specimens treated with different moisture conditions. Despite the water resistance of the main materials used for fabrics manufacturing, the change of the mechanical properties caused by the influence of water immersion has been noticed. The reduction in the tensile strength resulting under waterlogged is observed in the range from 5% to 16% depending on the type of investigated coated woven fabric and direction of weft or warp.


Author(s):  
M. Mrówka ◽  
M. Szymiczek ◽  
J. Lenża

Purpose: Thermoplastic polyurethanes (TPU) found application in mining. Due to the excellent processing properties, thermoplastic polyurethanes can be also use to make elements that would facilitate miner's work. These elements, however, differ in dimensions depending on the person who is going to use them, that is why they should be personalized. In case of all the above studies, the elements or stuffs were made by means of the injection method. This method limits the possibility of producing mining’s stuff only to models that have a mould. The 3D printing technology developing rapidly throughout the recent years allows for high-precision, personalized elements’ printing, made of thermoplastic materials. Design/methodology/approach: The samples from thermoplastic polyurethanes were made using 3D printing and then subjected to the aging process at intervals of 2, 7 and 30 days. The samples were then subjected to a static tensile tests, hardness tests and FT-IR spectroscopy. Findings: The obtained results of mechanical tests and IR analyses show that the aging process in mine water does not affect the mechanical properties of the samples regardless of the aging time. IR spectral analysis showed no changes in the structure of the main and side polyurethane chains. Both mechanical and spectral tests prove that polyurethanes processed using 3D printing technology can be widely used in mining. Research limitations/implications: Only one type of TPU was processed in this work. Further work should show that synthetic mine water does not degrade the mechanical properties of other commercially available TPUs. Practical implications: The additive technology allows getting elements of mining clothing, ortheses, insoles or exoskeleton elements adapted to one miner. Originality/value: The conducted tests allowed to determine no deterioration of the mechanical properties of samples aged in synthetic mine water. TPU processing using 3D printing technology can be used in mining.


Author(s):  
Jagannathan Sankar ◽  
Jayant Neogi ◽  
Suneeta S. Neogi ◽  
Marvln T. Dixie ◽  
Ranji Vaidyanathan

The effect of thermal soaking on the mechanical properties of a candidate material for advanced heat engine applications namely, hot isostatically pressed (HIPed) silicon nitride (GTEPY6) are reported here. Pure uniaxial tensile tests conducted at room and at elevated temperatures indicated that the tensile strength of this material dropped significantly after 1000°C. The residual tensile strength of PY6 material after thermal soaking at 1200° and 1300°C was also investigated. Test results showed that thermal soaking at 1200° and 1300°C increased the residual tensile strength. The thermal soaking time had a greater effect on the residual tensile strength at 1300°C. Tensile creep tests performed at 1200° and 1300°C showed that the steady state creep rate was influenced by both the temperature and the applied stress. The higher stress exponent in HIPed as compared to a sintered silicon nitride shows higher creep resistance in the case of HIPed materials.


Sign in / Sign up

Export Citation Format

Share Document