scholarly journals Spread of Antibiotic Resistance in Aquatic Environments: E. coli as a Case Study

Proceedings ◽  
2018 ◽  
Vol 2 (11) ◽  
pp. 693 ◽  
Author(s):  
Maria Adamantia Efstratiou ◽  
Marina Bountouni ◽  
Efthimios Kefalas

The aim of this study was to gather information on the spread of antibiotic resistance in Escherichia coli isolates from wells, boreholes and untreated drinking water in islands of Greece. We analyzed for antibiotic resistance 235 E. coli strains isolated from untreated drinking water of small rural communities, and ground water from 4 islands. Resistance was tested against Norfloxacin, Ciprofloxacin, Levofloxacin, Amoxicillin and Cefaclor. More than half (54.9%) were resistant to at least one of the antibiotics tested. Of these 26.3% showed multiple resistance (to two or more antibiotics). Strains from drinking water sources were overall more sensitive. Frequent resistance was observed for Amoxicillin (38.3%) and Levofloxacin (28.5%), low for Norfloxacin (5.5%).

2002 ◽  
Vol 68 (1) ◽  
pp. 440-443 ◽  
Author(s):  
Markus Woegerbauer ◽  
Bernard Jenni ◽  
Florian Thalhammer ◽  
Wolfgang Graninger ◽  
Heinz Burgmann

ABSTRACT Transfer of plasmid-borne antibiotic resistance genes in Escherichia coli wild-type strains is possible by transformation under naturally occurring conditions in oligotrophic, aquatic environments containing physiologic concentrations of calcium. In contrast, transformation is suppressed in nitrogen-rich body fluids like urine, a common habitat of uropathogenic strains. Current knowledge indicates that transformation of these E. coli wild-type strains is of no relevance for the acquisition of resistance in this clinically important environment.


2017 ◽  
Vol 61 (5) ◽  
Author(s):  
Jacynthe L. Toulouse ◽  
Thaddeus J. Edens ◽  
Lorea Alejaldre ◽  
Amee R. Manges ◽  
Joelle N. Pelletier

ABSTRACT Whole-genome sequencing of trimethoprim-resistant Escherichia coli clinical isolates identified a member of the trimethoprim-resistant type II dihydrofolate reductase gene family (dfrB). The dfrB4 gene was located within a class I integron flanked by multiple resistance genes. This arrangement was previously reported in a 130.6-kb multiresistance plasmid. The DfrB4 protein conferred a >2,000-fold increased trimethoprim resistance on overexpression in E. coli. Our results are consistent with the finding that dfrB4 contributes to clinical trimethoprim resistance.


Author(s):  
Alalade O.M. ◽  

The presence of coliform bacteria such as Escherichia coli (E. coli) in water used for drinking is of great public health concern due to the risk it poses to consumers. This risk is exacerbated when the bacteria are resistant to commonly used antibiotics. This study aimed at determining the antibiotic resistant phenotypes among E. coli isolated from sachet water (Pure water) and municipal pipe-borne water in selected local government areas of Kaduna state, Nigeria. A total of 105 water samples (69 sachet water and 36 municipal pipe-borne water) were subjected to bacterial isolation following standard methods and the isolated E. coli were subjected to antibiotic susceptibility testing to ten (10) commonly used antibiotics. The isolation rates of the organism were 14.4% and 22.9% in sachet and pipe-borne water respectively. The isolates were all (100%) susceptible to gentamicin, and also showed high susceptibility to amoxicillin-clavulanic acid (83.3%), chloramphenicol (94.5%), cefotaxime (94.5%) and sulphamethoxazole - trimethoprim (100%). On the other hand, 9 isolates (50%) showed various resistance patterns with 3 isolates being resistant to up to seven (7) antibiotics, with resistance patterns TE, NA, C, CIP, CTX, AMP, AML and TE, NA, AMC, SXT, CIP, AMP, AML. Eight out of the 9 resistant isolates showed resistance to Nalidixic acid and 7 showed resistance to Tetracycline. These results indicate that drinking water in the study area is a source of antibiotic resistance. It is obvious that more attention needs to be focused on ensuring the safety and potability of drinking water in the study area. Key words: Escherichia coli, Antibiotic resistance, sachet water, pipe-borne water


2012 ◽  
Vol 66 (11) ◽  
pp. 2385-2392 ◽  
Author(s):  
Ning Han ◽  
Duohong Sheng ◽  
Hai Xu

Aquatic environments are known reservoirs of antibiotic-resistant bacteria, but little information is known about the role of Escherichia coli strain subgroups, integrons, and integron-associated gene cassettes in the prevalence of antimicrobial resistance. To address these knowledge gaps, the diversity and distribution of drug-resistant E. coli strains and their integrons in hospital wastewater (HWW) and XiaoQing River water (XQRW) in Jinan, China were compared. Phylogenetic assays showed that the isolates were distributed in every E. coli subgroup. The prevalence of antibiotic resistance in each E. coli subgroup from HWW was higher than in subgroups from XQRW, except for phylogenetic subgroup A0. Classes 1 and 2 integrons were found in 327 strains (78.2% of the total 418 isolates) with a prevalence of 85.6% among the 209 isolates from HWW. Among 15 gene cassette arrays, dfrA17–aadA5 and dfrA12–orfF–aadA2 were the most prevalent. The prevalence of drug-resistance gene cassettes and diversity of arrays further proved that integrons were important contributors to the widespread occurrence of antibiotic resistance in E. coli among Jinan aquatic environments.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Jose F. Delgado-Blas ◽  
Cristina M. Ovejero ◽  
Sophia David ◽  
Natalia Montero ◽  
William Calero-Caceres ◽  
...  

AbstractAquatic environments are key niches for the emergence, evolution and dissemination of antimicrobial resistance. However, the population diversity and the genetic elements that drive the dynamics of resistant bacteria in different aquatic environments are still largely unknown. The aim of this study was to understand the population genomics and evolutionary events of Escherichia coli resistant to clinically important antibiotics including aminoglycosides, in anthropogenic and natural water ecosystems. Here we show that less different E. coli sequence types (STs) are identified in wastewater than in rivers, albeit more resistant to antibiotics, and with significantly more plasmids/cell (6.36 vs 3.72). However, the genomic diversity within E. coli STs in both aquatic environments is similar. Wastewater environments favor the selection of conserved chromosomal structures associated with diverse flexible plasmids, unraveling promiscuous interplasmidic resistance genes flux. On the contrary, the key driver for river E. coli adaptation is a mutable chromosome along with few plasmid types shared between diverse STs harboring a limited resistance gene content.


2021 ◽  
Vol 193 (8) ◽  
Author(s):  
Desmond Tichaona Mugadza ◽  
Sibusisiwe Isabel Nduku ◽  
Edlyn Gweme ◽  
Sherpherd Manhokwe ◽  
Patience Marume ◽  
...  

2011 ◽  
Vol 55 (5) ◽  
pp. 2438-2441 ◽  
Author(s):  
Zeynep Baharoglu ◽  
Didier Mazel

ABSTRACTAntibiotic resistance development has been linked to the bacterial SOS stress response. InEscherichia coli, fluoroquinolones are known to induce SOS, whereas other antibiotics, such as aminoglycosides, tetracycline, and chloramphenicol, do not. Here we address whether various antibiotics induce SOS inVibrio cholerae. Reporter green fluorescent protein (GFP) fusions were used to measure the response of SOS-regulated promoters to subinhibitory concentrations of antibiotics. We show that unlike the situation withE. coli, all these antibiotics induce SOS inV. cholerae.


2000 ◽  
Vol 12 (2) ◽  
pp. 118-125 ◽  
Author(s):  
Randall S. Singer ◽  
Wesley O. Johnson ◽  
Joan S. Jeffrey ◽  
Richard P. Chin ◽  
Tim E. Carpenter ◽  
...  

A general problem for microbiologists is determining the number of phenotypically similar colonies growing on an agar plate that must be analyzed in order to be confident of identifying all of the different strains present in the sample. If a specified number of colonies is picked from a plate on which the number of unique strains of bacteria is unknown, assigning a probability of correctly identifying all of the strains present on the plate is not a simple task. With Escherichia coli of avian cellulitis origin as a case study, a statistical model was designed that would delineate sample sizes for efficient and consistent identification of all the strains of phenotypically similar bacteria in a clinical sample. This model enables the microbiologist to calculate the probability that all of the strains contained within the sample are correctly identified and to generate probability-based sample sizes for colony identification. The probability of cellulitis lesions containing a single strain of E. coli was 95.4%. If one E. coli strain is observed out of three colonies randomly selected from a future agar plate, the probability is 98.8% that only one strain is on the plate. These results are specific for this cellulitis E. coli scenario. For systems in which the number of bacterial strains per sample is variable, this model provides a quantitative means by which sample sizes can be determined.


2016 ◽  
Vol 15 (2) ◽  
pp. 196-208 ◽  
Author(s):  
Nicole M. Masters ◽  
Aaron Wiegand ◽  
Jasmin M. Thompson ◽  
Tara L. Vollmerhausen ◽  
Eva Hatje ◽  
...  

We investigated Escherichia coli populations in a metropolitan river after an extreme flood event. Between nine and 15 of the 23 selected sites along the river were sampled fortnightly over three rounds. In all, 307 E. coli were typed using the PhP typing method and were grouped into common (C) or single (S) biochemical phenotypes (BPTs). A representative from each of the 31 identified C-BPTs was tested for 58 virulence genes (VGs) associated with intestinal and extra-intestinal E. coli, resistance to 22 antibiotics, production of biofilm and cytotoxicity to Vero cells. The number of E. coli in the first sampling round was significantly (P < 0.01) higher than subsequent rounds, whereas the number of VGs was significantly (P < 0.05) higher in isolates from the last sampling round when compared to previous rounds. Comparison of the C-BPTs with an existing database from wastewater treatment plants (WWTPs) in the same catchment showed that 40.6% of the river isolates were identical to the WWTP isolates. The relatively high number of VGs and antibiotic resistance among the C-BPTs suggests possessing and retaining these genes may provide niche advantages for those naturalised and/or persistent E. coli populations which may pose a health risk to the community.


2004 ◽  
Vol 48 (10) ◽  
pp. 3996-4001 ◽  
Author(s):  
Yolanda Sáenz ◽  
Laura Briñas ◽  
Elena Domínguez ◽  
Joaquim Ruiz ◽  
Myriam Zarazaga ◽  
...  

ABSTRACT Seventeen multiple-antibiotic-resistant nonpathogenic Escherichia coli strains of human, animal, and food origins showed a wide variety of antibiotic resistance genes, many of them carried by class 1 and class 2 integrons. Amino acid changes in MarR and mutations in marO were identified for 15 and 14 E. coli strains, respectively.


Sign in / Sign up

Export Citation Format

Share Document