scholarly journals Unprecedented Temporary Reduction in Global Air Pollution Associated with COVID-19 Forced Confinement: A Continental and City Scale Analysis

2020 ◽  
Vol 12 (15) ◽  
pp. 2420 ◽  
Author(s):  
Zhijie Zhang ◽  
Arfan Arshad ◽  
Chuanrong Zhang ◽  
Saddam Hussain ◽  
Weidong Li

Shortly after the outbreak of the novel infectious disease (COVID-19) started at the end of 2019, it turned into a global pandemic, which caused the lockdown of many countries across the world. Various strict measures were adopted to reduce anthropogenic activities in order to prevent further spread and infection of the disease. In this study, we utilized continental scale remotely sensed data along with city scale in situ air quality observations for 2020 as well as data from the baseline period (2015–2019) to provide an early insight on air pollution changes in response to the COVID-19 pandemic lockdown, by combining both continental and city scales. For the continental scale analysis, data of NO2, SO2, and O3 were acquired from the ozone monitoring instrument (OMI) and data of aerosol optical depth (AOD) were collected from the moderate resolution imaging spectroradiometer (MODIS). For city scale analysis, data of NO2, CO, PM2.5, O3, and SO2 were derived from ground-based air quality observations. Results from satellite observations at the continental scale showed that concentrations of NO2, SO2, and AOD substantially dropped in 2020 during the lockdown period compared to their averages for the baseline period over all continents, with a maximum reduction of ~33% for NO2 in East Asia, ~41% for SO2 in East Asia, and ~37% for AOD in South Asia. In the case of O3, the maximum overall reduction was observed as ~11% in Europe, followed by ~10% in North America, while a slight increase was found in other study regions. These findings align with ground-based air quality observations, which showed that pollutants such as NO2, CO, PM2.5, and SO2 during the 2020 lockdown period decreased significantly except that O3 had varying patterns in different cities. Specifically, a maximum reduction of ~49% in NO2 was found in London, ~43% in CO in Wuhan, ~38% in PM2.5 in Chennai, and ~48% in SO2 in Beijing. In the case of urban O3, a maximum reduction of ~43% was found in Wuhan, but a significant increase of ~47% was observed in Chennai. It is obvious that restricted human activities during the lockdown have reduced the anthropogenic emissions and subsequently improved air quality, especially across the metropolitan cities.

2021 ◽  
Vol 19 (3) ◽  
pp. 195-206
Author(s):  
Ahmad Kamruzzaman Majumder ◽  
◽  
Abdullah Al Nayeem ◽  
Mahmuda Islam ◽  
William S Carter ◽  
...  

Anthropogenic activities were greatly restricted in many South Asian cities during the COVID-19 (Coronavirus disease-2019) pandemic creating an opportunity to observe source reduction of air pollutants. This study analyzed the change in columnar nitrogen dioxide (NO2) and particulate matter (PM2.5, aerodynamic diameter ≤2.5 µm) in five megacities of South Asian countries (Delhi, Dhaka, Kathmandu, Kolkata, and Lahore) from April 1 - May 31 over the previous three years (2018-2020). The Dutch-Finnish Ozone Monitoring Instrument (OMI) provided satellite-based daily tropospheric columnar NO2 values for this study. Ground-based hourly PM2.5 data were collected from the World's Air Pollution: Real-time Air Quality Index Project. The study observed a decrease of tropospheric columnar NO2 in selected cities in 2020 compared to 2018 and 2019 from April 1 - May 31. The mean daily reading of PM2.5 was 36.56% and 45.44% less in Delhi; 12.67% and 23.46% less in Dhaka; in Kathmandu 28.32% and 37.42% less; in Kolkata 41.02% less in 2020 than 2018 and 34.08% less in 2019 during April 1 - May 31. The PM2.5 was 44.26% less in 2020 than in 2019 during April 9 - May 31 in Lahore. The daily mean difference in concentration during April 1 - May 31, 2018-2020 was significantly lower at α=0.01 level for both pollutants. Introducing appropriate mitigation measures would provide safer environments and reduce future air pollution in South Asian cities.


Author(s):  
Sungbo Shim ◽  
Hyunmin Sung ◽  
Sanghoon Kwon ◽  
Jisun Kim ◽  
Jaehee Lee ◽  
...  

This study investigates changes in fine particulate matter (PM2.5) concentration and air-quality index (AQI) in Asia using nine different Coupled Model Inter-Comparison Project 6 (CMIP6) climate model ensembles from historical and future scenarios under shared socioeconomic pathways (SSPs). The results indicated that the estimated present-day PM2.5 concentrations were comparable to satellite-derived data. Overall, the PM2.5 concentrations of the analyzed regions exceeded the WHO air-quality guidelines, particularly in East Asia and South Asia. In future SSP scenarios that consider the implementation of significant air-quality controls (SSP1-2.6, SSP5-8.5) and medium air-quality controls (SSP2-4.5), the annual PM2.5 levels were predicted to substantially reduce (by 46% to around 66% of the present-day levels) in East Asia, resulting in a significant improvement in the AQI values in the mid-future. Conversely, weak air pollution controls considered in the SSP3-7.0 scenario resulted in poor AQI values in China and India. Moreover, a predicted increase in the percentage of aged populations (>65 years) in these regions, coupled with high AQI values, may increase the risk of premature deaths in the future. This study also examined the regional impact of PM2.5 mitigations on downward shortwave energy and surface air temperature. Our results revealed that, although significant air pollution controls can reduce long-term exposure to PM2.5, it may also contribute to the warming of near- and mid-future climates.


2020 ◽  
Author(s):  
Kenza Khomsi ◽  
Houda Najmi ◽  
Hassan Amghar ◽  
Youssef Chelhaoui ◽  
Zineb Souhaili

AbstractOn the 20th April 2020, the end date of the first strict lockdown period in Morocco, 2 403 410 cases of the corona Virus were confirmed globally. The number of Morocco confirmed cases attended 2990, while 12 746 were suspected and 143 deaths were recorded. Due to the pandemic of coronavirus disease 2019 worldwide and in Morocco, almost all avoidable activities in the country were prohibited since the kingdom announced activities reduction on March 16, 2020 and then general lockdown with reduced industrial activities on March 20, 2020.This study aims at comparing the air quality status in Casablanca and Marrakech, two large cities from Morocco, before the pandemic and during the lockdown situation to show whether COVID-19 compelled-anthropogenic activities lockdown may have saved lives by restraining ambient air pollution than by preventing infection.We found that, during the quarantine, NO2 dropped by -12 μg/m3 in Casablanca and -7 μg/m3 in Marrakech. PM2·5 dropped by -18 μg/m3 in Casablanca and -14 μg/m3 in Marrakech. CO dropped by -0.04 mg/m3 in Casablanca and -0.12 mg/m3 in Marrakech. This air pollution reduction had created human health benefits and had reduced mortality and saved lives mainly from cardiovascular diseases.


Author(s):  
Maria Luisa Lozano-Camargo ◽  
Christian Hugo Rodríguez-Gómez ◽  
Laura Galicia-Luis ◽  
Fernando Talavera-Romero

As humanity evolves, air pollution has increased due to the various anthropogenic activities that man carries out, alienating emissions of gases and polluting particles to the environment, seriously affecting the health of living beings and the planet, since these cause Irreversible physical and chemical alterations in the environment, becoming a major problem worldwide. In Mexico there are meteorological stations that measure air quality and they are only found at fixed points, however, they do not cover all areas of the State of Mexico, the deterioration of air quality brings with it an increase in respiratory and cardiovascular diseases ; That is why this project's main objective is to build a portable electrochemical sensor using an Arduino board, using customizable software capable of quantifying and analyzing three polluting gases CO, CO2 and O3, especially in the municipality of Chimalhuacán located in the area East of the State of México.


2017 ◽  
Vol 7 (15) ◽  
pp. 8-17 ◽  
Author(s):  
Modise Wiston

Background. Air pollution is an important issue in developed and industrialized countries. The most common sources of air pollution are anthropogenic activities such as construction dust, vehicular emissions and mining. For low- and middle-income countries, biomass burning and indoor heating are the leading sources of air pollution. As more of the world undergoes development and human populations increase, industrialization is also increasing, along with the potential for air pollution. Objectives. This article reviews the status of air pollution to raise awareness of air quality and human health in Botswana. Discussion. Since independence, Botswana has experienced one of the highest economic development growth rates in the world. These changes have occurred as a result of economic growth and resource utilization associated with increased industrialization. However, there is growing worldwide concern about the effect and impact of pollution due to industrial growth. Botswana is ranked amongst the most polluted countries with serious air pollution, despite a population of just over 2 million. Conclusions. Rapid development and increased urbanization have had a major environmental impact around the world. This increased growth has the potential to lead to air quality degradation. Significant health threats are posed by industrial and vehicular emissions, especially in urban and peri-urban areas where the population is most concentrated. It is important that the linkage between air pollution and health effects is fully examined across all scales of life, especially in developing countries. In addition, programs should be devised to educate the public about the pollution impacts on health. Competing Interests: The authors declare no financial competing interests.


2019 ◽  
Vol 19 (20) ◽  
pp. 13309-13323 ◽  
Author(s):  
Steve Hung Lam Yim ◽  
Yefu Gu ◽  
Matthew A. Shapiro ◽  
Brent Stephens

Abstract. Numerous studies have reported that ambient air pollution, which has both local and long-range sources, causes adverse impacts on the environment and human health. Previous studies have investigated the impacts of transboundary air pollution (TAP) in East Asia, albeit primarily through analyses of episodic events. In addition, it is useful to better understand the spatiotemporal variations in TAP and the resultant impact on the environment and human health. This study aimed at assessing and quantifying the air quality impacts in Japan and South Korea due to local emissions and TAP from sources in East Asia - one of the most polluted regions in the world. We applied state-of-the-science atmospheric models to simulate air quality in East Asia and then analyzed the air quality and acid deposition impacts of both local emissions and TAP sources in Japan and South Korea. Our results show that ∼ 30 % of the annual average ambient PM2.5 concentrations in Japan and South Korea in 2010 were contributed to by local emissions within each country, while the remaining ∼ 70 % were contributed to by TAP from other countries in the region. More detailed analyses also revealed that the local contribution was higher in the metropolises of Japan (∼ 40 %–79 %) and South Korea (∼ 31 %–55 %) and that minimal seasonal variations in surface PM2.5 occurred in Japan, whereas there was a relatively large variation in South Korea in the winter. Further, among all five studied anthropogenic emission sectors of China, the industrial sector represented the greatest contributor to annual surface PM2.5 concentrations in Japan and South Korea, followed by the residential and power generation sectors. Results also show that TAP's impact on acid deposition (SO42- and NO3-) was larger than TAP's impact on PM2.5 concentrations (accounting for over 80 % of the total deposition), and that seasonal variations in acid deposition were similar for both Japan and South Korea (i.e., higher in both the winter and summer). Finally, wet deposition had a greater impact on mixed forests in Japan and savannas in South Korea. Given these significant impacts of TAP in the region, it is paramount that cross-national efforts should be taken to mitigate air pollution problems across East Asia.


2018 ◽  
Vol 69 ◽  
pp. 12-24
Author(s):  
Furqan Mahmud Butt ◽  
Muhammad Imran Shahzad ◽  
Seemab Khalid ◽  
Nadeem Iqbal ◽  
Anjum Rasheed ◽  
...  

Air pollution in Pakistan is causing damage to health, environment and quality of life. Air pollution in Pakistan is not effectively monitored due to heavy cost involved in setting up ground stations. However, Satellite remote sensing can effectively monitor the air pollution in terms of Aerosol Optical Depth (AOD) at regional as well as global level. However, algorithms used to derive AOD from different sensors have some inherited differences which can pose challenges in monitoring regional AOD at high temporal resolution using more than one sensor. Therefore, this study focuses on comparison of four major satellite based AOD products namely Moderate Resolution Imaging SpectroRadiometer (MODIS), Multi-angle Imaging SpectroRadiometer (MISR), Ozone Monitoring Instrument multiwavelength (OMI) aerosol product and Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) with the ground based AErosol RObotic NETwork (AERONET) AOD which is only available from Lahore and Karachi in Pakistan. The correlation of various AOD products with AERONET AOD is estimated statistically through coefficient of determination (R2), Root Mean Square Error (RMSE), slope and intercept. It is noticed that MODIS is relatively accurate and reliable for monitoring air quality on operational bases over the land cover area of Lahore (R2= 0.78; RMSE = 0.18 ), whereas MISR over the coastal areas of Karachi (R2= 0.82; RMSE = 0.20 ). The results of the study will help the stakeholders in planning additional ground stations for operational monitoring of air quality at regional level.


Author(s):  
Crystal Jane Ethan ◽  
Kingsley Katleho Mokoena ◽  
Yan Yu

Over the past decades, urbanization and industrialization have led to a change in air quality, bringing researchers to a full realization of the damaging effects of human activities on the environment. This study focused on describing air quality during the initial phase of the Novel Coronavirus disease (COVID-19) pandemic (since there were fewer anthropogenic activities) in 10 Chinese mega-cities. Using the independent t-test, the means of air quality index (AQI) scores and individual air pollutants concentration during the outbreak were compared with the means before the outbreak. Cohen’s d was estimated to quantify how much difference was observed. Based on the AQI score, the air quality in these 10 cities ranged from excellent (Shenzhen) to light pollution (Xi’an) with 44.8 μg m−3 and 119.7 μg m−3, respectively. In comparison to the 2019 air quality, Guangzhou and Wuhan noted major differences in air quality during the outbreak. Indicators of traffic pollution, particularly NO2, were significantly lower during the outbreak in all cities. Particulate matter pollution varied, with some cities observing lower concentrations and other higher concentrations during the outbreak. There was a significant decrease in air pollution levels during the outbreak. More researchers should observe changes in air quality during peculiar or major events. Implementation of stringent regulation on vehicle use should be considered in mega-cities. Relevant findings should be employed in emphasizing the detrimental effects of anthropogenic activities and support the need for stringent emission control regulations.


2021 ◽  
Vol 8 (2) ◽  
pp. 141-150
Author(s):  
Afed Ullah Khan ◽  
Jehanzeb Khan ◽  
Fayaz Ahmad Khan ◽  
Rooman Khan ◽  
Raza Ullah Khan ◽  
...  

Background: The impacts of lockdown on air pollution have been examined in various parts of the world. The concentration of main air pollutants has been decreased owing to a decline in anthropogenic activities like fossil fuel burning, etc. The main aim of this research was to assess the impacts of lockdown on air pollution of the main urban areas of Pakistan. Methods: The present study was conducted to assess the air quality index (AQI) of the main urban areas of Pakistan based on the pre- and post-lockdown effects and mortality rate due to coronavirus disease 2019 (COVID-19). Hotspot analysis was conducted to assess the most vulnerable spots at the country level. Results: The AQI greatly improved in all the main cities of Pakistan which ranges from 51 to 87. The pre- and post-lockdown AQI were categorized from unhealthy for sensitive groups to hazardous and moderate, respectively. There are noticeable hotspots in the vicinity of Lahore and Karachi. The level of nitrogen dioxide (NO2 ) dropped 45%, 49%, 20%, 35%, and 56% in Peshawar, Lahore, Multan, Karachi, Islamabad, and Rawalpindi, respectively. Conclusion: Nature healed due to lockdown, which is the only good face of the COVID-19 pandemic. The temporary lockdown greatly improved air quality which may stimulate the policymakers, researchers, and governments for the smart use of resources to minimize emissions to heal the nature. The present study also suggests the application of hotspot analysis in different contexts for the evidence-based care services decisions during the COVID-19 pandemic.


2012 ◽  
Vol 12 (15) ◽  
pp. 6915-6937 ◽  
Author(s):  
A. Pozzer ◽  
P. Zimmermann ◽  
U.M. Doering ◽  
J. van Aardenne ◽  
H. Tost ◽  
...  

Abstract. The atmospheric chemistry general circulation model EMAC has been used to estimate the impact of anthropogenic emission changes on global and regional air quality in recent and future years (2005, 2010, 2025 and 2050). The emission scenario assumes that population and economic growth largely determine energy and food consumption and consequent pollution sources with the current technologies ("business as usual"). This scenario is chosen to show the effects of not implementing legislation to prevent additional climate change and growing air pollution, other than what is in place for the base year 2005, representing a pessimistic (but plausible) future. By comparing with recent observations, it is shown that the model reproduces the main features of regional air pollution distributions though with some imprecisions inherent to the coarse horizontal resolution (~100 km) and simplified bottom-up emission input. To identify possible future hot spots of poor air quality, a multi pollutant index (MPI), suited for global model output, has been applied. It appears that East and South Asia and the Middle East represent such hotspots due to very high pollutant concentrations, while a general increase of MPIs is observed in all populated regions in the Northern Hemisphere. In East Asia a range of pollutant gases and fine particulate matter (PM2.5) is projected to reach very high levels from 2005 onward, while in South Asia air pollution, including ozone, will grow rapidly towards the middle of the century. Around the Persian Gulf, where natural PM2.5 concentrations are already high (desert dust), ozone levels are expected to increase strongly. The population weighted MPI (PW-MPI), which combines demographic and pollutant concentration projections, shows that a rapidly increasing number of people worldwide will experience reduced air quality during the first half of the 21st century. Following this business as usual scenario, it is projected that air quality for the global average citizen in 2050 would be almost comparable to that for the average citizen in East Asia in the year 2005, which underscores the need to pursue emission reductions.


Sign in / Sign up

Export Citation Format

Share Document