scholarly journals Hyperspectral Imaging in Environmental Monitoring: A Review of Recent Developments and Technological Advances in Compact Field Deployable Systems

Sensors ◽  
2019 ◽  
Vol 19 (14) ◽  
pp. 3071 ◽  
Author(s):  
Stuart ◽  
McGonigle ◽  
Willmott

The development and uptake of field deployable hyperspectral imaging systems within environmental monitoring represents an exciting and innovative development that could revolutionize a number of sensing applications in the coming decades. In this article we focus on the successful miniaturization and improved portability of hyperspectral sensors, covering their application both from aerial and ground-based platforms in a number of environmental application areas, highlighting in particular the recent implementation of low-cost consumer technology in this context. At present, these devices largely complement existing monitoring approaches, however, as technology continues to improve, these units are moving towards reaching a standard suitable for stand-alone monitoring in the not too distant future. As these low-cost and light-weight devices are already producing scientific grade results, they now have the potential to significantly improve accessibility to hyperspectral monitoring technology, as well as vastly proliferating acquisition of such datasets.

2021 ◽  
Vol 9 ◽  
Author(s):  
Xiao-Guang Gao ◽  
Ling-Xiao Cheng ◽  
Wen-Shuai Jiang ◽  
Xiao-Kuan Li ◽  
Fei Xing

Being the first successfully prepared two-dimensional material, graphene has attracted extensive attention from researchers due to its excellent properties and extremely wide range of applications. In particular, graphene and its derivatives have displayed several ideal properties, including broadband light absorption, ability to quench fluorescence, excellent biocompatibility, and strong polarization-dependent effects, thus emerging as one of the most popular platforms for optical sensors. Graphene and its derivatives-based optical sensors have numerous advantages, such as high sensitivity, low-cost, fast response time, and small dimensions. In this review, recent developments in graphene and its derivatives-based optical sensors are summarized, covering aspects related to fluorescence, graphene-based substrates for surface-enhanced Raman scattering (SERS), optical fiber biological sensors, and other kinds of graphene-based optical sensors. Various sensing applications, such as single-cell detection, cancer diagnosis, protein, and DNA sensing, are introduced and discussed systematically. Finally, a summary and roadmap of current and future trends are presented in order to provide a prospect for the development of graphene and its derivatives-based optical sensors.


Sensors ◽  
2021 ◽  
Vol 22 (1) ◽  
pp. 81
Author(s):  
Chuanxin Teng ◽  
Rui Min ◽  
Jie Zheng ◽  
Shijie Deng ◽  
Maosen Li ◽  
...  

The simple and highly sensitive measurement of the refractive index (RI) of liquids is critical for designing the optical instruments and important in biochemical sensing applications. Intensity modulation-based polymer optical fiber (POF) RI sensors have a lot of advantages including low cost, easy fabrication and operation, good flexibility, and working in the visible wavelength. In this review, recent developments of the intensity modulation POF-based RI sensors are summarized. The materials of the POF and the working principle of intensity modulation are introduced briefly. Moreover, the RI sensing performance of POF sensors with different structures including tapered, bent, and side-polished structures, among others, are presented in detail. Finally, the sensing performance for different structures of POF-based RI sensors are compared and discussed.


2021 ◽  
Vol 9 ◽  
Author(s):  
Dzmitry Kananovich ◽  
Gábor Zoltán Elek ◽  
Margus Lopp ◽  
Victor Borovkov

Despite the remarkable advances in the area of asymmetric catalytic oxidations over the past decades, the development of sustainable and environmentally benign enantioselective oxidation techniques, especially with the efficiency level similar to natural enzymes, still represents a challenge. The growing demand for enantiopure compounds and high interest to industry-relevant green technological advances continue to encourage the research pursuits in this field. Among various oxidants, molecular oxygen is ubiquitous, being available at low cost, environmentally benign and easy-to-handle material. This review highlights recent achievements in catalytic enantioselective oxidations utilizing molecular oxygen as the sole oxidant, with focus on the mechanisms of dioxygen activation and chirogenesis in these transformations.


2020 ◽  
Vol 90 (3) ◽  
pp. 30502
Author(s):  
Alessandro Fantoni ◽  
João Costa ◽  
Paulo Lourenço ◽  
Manuela Vieira

Amorphous silicon PECVD photonic integrated devices are promising candidates for low cost sensing applications. This manuscript reports a simulation analysis about the impact on the overall efficiency caused by the lithography imperfections in the deposition process. The tolerance to the fabrication defects of a photonic sensor based on surface plasmonic resonance is analysed. The simulations are performed with FDTD and BPM algorithms. The device is a plasmonic interferometer composed by an a-Si:H waveguide covered by a thin gold layer. The sensing analysis is performed by equally splitting the input light into two arms, allowing the sensor to be calibrated by its reference arm. Two different 1 × 2 power splitter configurations are presented: a directional coupler and a multimode interference splitter. The waveguide sidewall roughness is considered as the major negative effect caused by deposition imperfections. The simulation results show that plasmonic effects can be excited in the interferometric waveguide structure, allowing a sensing device with enough sensitivity to support the functioning of a bio sensor for high throughput screening. In addition, the good tolerance to the waveguide wall roughness, points out the PECVD deposition technique as reliable method for the overall sensor system to be produced in a low-cost system. The large area deposition of photonics structures, allowed by the PECVD method, can be explored to design a multiplexed system for analysis of multiple biomarkers to further increase the tolerance to fabrication defects.


2020 ◽  
Vol 18 (1) ◽  
pp. 1148-1166
Author(s):  
Ganjar Fadillah ◽  
Septian Perwira Yudha ◽  
Suresh Sagadevan ◽  
Is Fatimah ◽  
Oki Muraza

AbstractPhysical and chemical methods have been developed for water and wastewater treatments. Adsorption is an attractive method due to its simplicity and low cost, and it has been widely employed in industrial treatment. In advanced schemes, chemical oxidation and photocatalytic oxidation have been recognized as effective methods for wastewater-containing organic compounds. The use of magnetic iron oxide in these methods has received much attention. Magnetic iron oxide nanocomposite adsorbents have been recognized as favorable materials due to their stability, high adsorption capacities, and recoverability, compared to conventional sorbents. Magnetic iron oxide nanocomposites have also been reported to be effective in photocatalytic and chemical oxidation processes. The current review has presented recent developments in techniques using magnetic iron oxide nanocomposites for water treatment applications. The review highlights the synthesis method and compares modifications for adsorbent, photocatalytic oxidation, and chemical oxidation processes. Future prospects for the use of nanocomposites have been presented.


Sensors ◽  
2020 ◽  
Vol 21 (1) ◽  
pp. 189
Author(s):  
Susana Campuzano ◽  
Paloma Yáñez-Sedeño ◽  
José Manuel Pingarrón

The multifaceted key roles of cytokines in immunity and inflammatory processes have led to a high clinical interest for the determination of these biomolecules to be used as a tool in the diagnosis, prognosis, monitoring and treatment of several diseases of great current relevance (autoimmune, neurodegenerative, cardiac, viral and cancer diseases, hypercholesterolemia and diabetes). Therefore, the rapid and accurate determination of cytokine biomarkers in body fluids, cells and tissues has attracted considerable attention. However, many currently available techniques used for this purpose, although sensitive and selective, require expensive equipment and advanced human skills and do not meet the demands of today’s clinic in terms of test time, simplicity and point-of-care applicability. In the course of ongoing pursuit of new analytical methodologies, electrochemical biosensing is steadily gaining ground as a strategy suitable to develop simple, low-cost methods, with the ability for multiplexed and multiomics determinations in a short time and requiring a small amount of sample. This review article puts forward electrochemical biosensing methods reported in the last five years for the determination of cytokines, summarizes recent developments and trends through a comprehensive discussion of selected strategies, and highlights the challenges to solve in this field. Considering the key role demonstrated in the last years by different materials (with nano or micrometric size and with or without magnetic properties), in the design of analytical performance-enhanced electrochemical biosensing strategies, special attention is paid to the methods exploiting these approaches.


Chemosensors ◽  
2021 ◽  
Vol 9 (5) ◽  
pp. 108
Author(s):  
Giancarla Alberti ◽  
Camilla Zanoni ◽  
Vittorio Losi ◽  
Lisa Rita Magnaghi ◽  
Raffaela Biesuz

This review illustrates various types of polymer and nanocomposite polymeric based sensors used in a wide variety of devices. Moreover, it provides an overview of the trends and challenges in sensor research. As fundamental components of new devices, polymers play an important role in sensing applications. Indeed, polymers offer many advantages for sensor technologies: their manufacturing methods are pretty simple, they are relatively low-cost materials, and they can be functionalized and placed on different substrates. Polymers can participate in sensing mechanisms or act as supports for the sensing units. Another good quality of polymer-based materials is that their chemical structure can be modified to enhance their reactivity, biocompatibility, resistance to degradation, and flexibility.


Author(s):  
Bochao Chen ◽  
Ming Liang ◽  
Qingzhao Wu ◽  
Shan Zhu ◽  
Naiqin Zhao ◽  
...  

AbstractThe development of sodium-ion (SIBs) and potassium-ion batteries (PIBs) has increased rapidly because of the abundant resources and cost-effectiveness of Na and K. Antimony (Sb) plays an important role in SIBs and PIBs because of its high theoretical capacity, proper working voltage, and low cost. However, Sb-based anodes have the drawbacks of large volume changes and weak charge transfer during the charge and discharge processes, thus leading to poor cycling and rapid capacity decay. To address such drawbacks, many strategies and a variety of Sb-based materials have been developed in recent years. This review systematically introduces the recent research progress of a variety of Sb-based anodes for SIBs and PIBs from the perspective of composition selection, preparation technologies, structural characteristics, and energy storage behaviors. Moreover, corresponding examples are presented to illustrate the advantages or disadvantages of these anodes. Finally, we summarize the challenges of the development of Sb-based materials for Na/K-ion batteries and propose potential research directions for their further development.


Sign in / Sign up

Export Citation Format

Share Document