scholarly journals Irriman Platform: Enhancing Farming Sustainability through Cloud Computing Techniques for Irrigation Management

Sensors ◽  
2021 ◽  
Vol 22 (1) ◽  
pp. 228
Author(s):  
Manuel Forcén-Muñoz ◽  
Nieves Pavón-Pulido ◽  
Juan Antonio López-Riquelme ◽  
Abdelmalek Temnani-Rajjaf ◽  
Pablo Berríos ◽  
...  

Crop sustainability is essential for balancing economic development and environmental care, mainly in strong and very competitive regions in the agri-food sector, such as the Region of Murcia in Spain, considered to be the orchard of Europe, despite being a semi-arid area with an important scarcity of fresh water. In this region, farmers apply efficient techniques to minimize supplies and maximize quality and productivity; however, the effects of climate change and the degradation of significant natural environments, such as, the “Mar Menor”, the most extent saltwater lagoon of Europe, threatened by resources overexploitation, lead to the search of even better irrigation management techniques to avoid certain effects which could damage the quaternary aquifer connected to such lagoon. This paper describes the Irriman Platform, a system based on Cloud Computing techniques, which includes low-cost wireless data loggers, capable of acquiring data from a wide range of agronomic sensors, and a novel software architecture for safely storing and processing such information, making crop monitoring and irrigation management easier. The proposed platform helps agronomists to optimize irrigation procedures through a usable web-based tool which allows them to elaborate irrigation plans and to evaluate their effectiveness over crops. The system has been deployed in a large number of representative crops, located along near 50000 ha of the surface, during several phenological cycles. Results demonstrate that the system enables crop monitoring and irrigation optimization, and makes interaction between farmers and agronomists easier.

Author(s):  
Ramandeep Kaur ◽  
Navpreet Kaur

The cloud computing can be essentially expressed as aconveyance of computing condition where distinctive assets are conveyed as a support of the client or different occupants over the web. The task scheduling basically concentrates on improving the productive use of assets and henceforth decrease in task fruition time. Task scheduling is utilized to allot certain tasks to specific assets at a specific time occurrence. A wide range of systems has been exhibited to take care of the issues of scheduling of various tasks. Task scheduling enhances the productive use of asset and yields less reaction time with the goal that the execution of submitted tasks happens inside a conceivable least time. This paper talks about the investigation of need, length and due date based task scheduling calculations utilized as a part of cloud computing.


1993 ◽  
Vol 32 (2) ◽  
pp. 226-228
Author(s):  
Zakir Hussain

The book; under review provides a valuable account of the issues and factors in managing the irrigation system, and presents a lucid and thorough discussion on the performance of the irrigation bureaucracies. It comprises two parts: the first outlines the factors affecting irrigation performance under a wide range of topics in the first five chapters. In Chapter One, the authors have attempted to assess the performance of the irrigation bureaucracies, conceptualise irrigation management issues, and build an empirical base for analysis while drawing upon the experience of ten country cases in Asia, Africa, and Latin America. The Second Chapter focuses on the variations in the management structures identified and the types of irrigation systems; and it defines the variables of the management structures. The activities and objectives of irrigation management are discussed in Chapter Three. The objectives include: greater production and productivity of irrigation projects; improved water distribution; reduction in conflicts; greater resource mobilisation and a sustained system performance. The authors also highlight the performance criterion in this chapter. They identify about six contextual factors which affect the objectives and the performance of irrigation, which are discussed in detail in Chapter Four. In Chapter Five, some organisational variables, which would lead to improvements in irrigation, are examined.


2021 ◽  
pp. 096100062110165
Author(s):  
Mohammadhiwa Abdekhoda ◽  
Fatemeh Ranjbaran ◽  
Asghar Sattari

This study was conducted with the aim of evaluating the role of information and information resources in the awareness, control, and prevention of COVID-19. This study was a descriptive-analytical survey in which 450 participants were selected for the study. The data collection instrument was a researcher-made questionnaire. Descriptive and inferential statistics were used to analyze the data through SPSS. The findings show that a wide range of mass media has become well known as information resources for COVID-19. Other findings indicate a significant statistical difference in the rate of using information resources during COVID-19 based on age and gender; however, this difference is not significant regarding the reliability of information resources with regard to age and gender. Health information has an undisputable role in the prevention and control of pandemic diseases such as COVID-19. Providing accurate, reliable, and evidence-based information in a timely manner for the use of resources and information channels related to COVID-19 can be a fast and low-cost strategic approach in confronting this disease.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Maria Elena Antinori ◽  
Marco Contardi ◽  
Giulia Suarato ◽  
Andrea Armirotti ◽  
Rosalia Bertorelli ◽  
...  

AbstractMycelia, the vegetative part of fungi, are emerging as the avant-garde generation of natural, sustainable, and biodegradable materials for a wide range of applications. They are constituted of a self-growing and interconnected fibrous network of elongated cells, and their chemical and physical properties can be adjusted depending on the conditions of growth and the substrate they are fed upon. So far, only extracts and derivatives from mycelia have been evaluated and tested for biomedical applications. In this study, the entire fibrous structures of mycelia of the edible fungi Pleurotus ostreatus and Ganoderma lucidum are presented as self-growing bio-composites that mimic the extracellular matrix of human body tissues, ideal as tissue engineering bio-scaffolds. To this purpose, the two mycelial strains are inactivated by autoclaving after growth, and their morphology, cell wall chemical composition, and hydrodynamical and mechanical features are studied. Finally, their biocompatibility and direct interaction with primary human dermal fibroblasts are investigated. The findings demonstrate the potentiality of mycelia as all-natural and low-cost bio-scaffolds, alternative to the tissue engineering systems currently in place.


Polymers ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 1807
Author(s):  
Estefanía Álvarez-Castillo ◽  
José Manuel Aguilar ◽  
Carlos Bengoechea ◽  
María Luisa López-Castejón ◽  
Antonio Guerrero

Composite materials based on proteins and carbohydrates normally offer improved water solubility, biodegradability, and biocompatibility, which make them attractive for a wide range of applications. Soy protein isolate (SPI) has shown superabsorbent properties that are useful in fields such as agriculture. Alginate salts (ALG) are linear anionic polysaccharides obtained at a low cost from brown algae, displaying a good enough biocompatibility to be considered for medical applications. As alginates are quite hydrophilic, the exchange of ions from guluronic acid present in its molecular structure with divalent cations, particularly Ca2+, may induce its gelation, which would inhibit its solubilization in water. Both biopolymers SPI and ALG were used to produce composites through injection moulding using glycerol (Gly) as a plasticizer. Different biopolymer/plasticizer ratios were employed, and the SPI/ALG ratio within the biopolymer fraction was also varied. Furthermore, composites were immersed in different CaCl2 solutions to inhibit the amount of soluble matter loss and to enhance the mechanical properties of the resulting porous matrices. The main goal of the present work was the development and characterization of green porous matrices with inhibited solubility thanks to the gelation of alginate.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Duy Tung Phan ◽  
Chang Won Jung

AbstractAn electromagnetic pulse (EMP) with high energy can damage electronic equipment instantly within a wide range of thousands of kilometers. Generally, a metal plate placed inside a thick concrete wall is used against an EMP, but it is not suitable for an EMP shielding window, which requires not only strong shielding effectiveness (SE) but also optical transparency (OT). In this paper, we propose a very thin and optically transparent structure with excellent SE for EMP shielding window application. The proposed structure consists of a saltwater layer held between two glass substrates and two metal mesh layers on the outside of the glass, with a total thickness of less than 1.5 cm. The SE and OT of the structure are above 80 dB and 45%, respectively, which not only meet the requirement of EMP shielding for military purposes but also retain the procedure of good observation. Moreover, the OT of the structure can be significantly improved using only one metal mesh film (MMF) layer, while the SE is still maintained high to satisfy the required SE for home applicants. With the major advantages of low cost, optical transparency, strong SE, and flexible performance, the proposed structure can be considered a good solution for transparent EMP shielding windows.


Molecules ◽  
2021 ◽  
Vol 26 (8) ◽  
pp. 2299
Author(s):  
Jéssica P. Silva ◽  
Alonso R. P. Ticona ◽  
Pedro R. V. Hamann ◽  
Betania F. Quirino ◽  
Eliane F. Noronha

Lignocellulosic residues are low-cost abundant feedstocks that can be used for industrial applications. However, their recalcitrance currently makes lignocellulose use limited. In natural environments, microbial communities can completely deconstruct lignocellulose by synergistic action of a set of enzymes and proteins. Microbial degradation of lignin by fungi, important lignin degraders in nature, has been intensively studied. More recently, bacteria have also been described as able to break down lignin, and to have a central role in recycling this plant polymer. Nevertheless, bacterial deconstruction of lignin has not been fully elucidated yet. Direct analysis of environmental samples using metagenomics, metatranscriptomics, and metaproteomics approaches is a powerful strategy to describe/discover enzymes, metabolic pathways, and microorganisms involved in lignin breakdown. Indeed, the use of these complementary techniques leads to a better understanding of the composition, function, and dynamics of microbial communities involved in lignin deconstruction. We focus on omics approaches and their contribution to the discovery of new enzymes and reactions that impact the development of lignin-based bioprocesses.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Shi Cao ◽  
Wei Hong ◽  
Ziqi Ye ◽  
Lei Gong

AbstractThe direct and selective C(sp3)-H functionalization of cycloalkanes and alkanes is a highly useful process in organic synthesis owing to the low-cost starting materials, the high step and atom economy. Its application to asymmetric catalysis, however, has been scarcely explored. Herein, we disclose our effort toward this goal by incorporation of dual asymmetric photocatalysis by a chiral nickel catalyst and a commercially available organophotocatalyst with a radical relay strategy through sulfur dioxide insertion. Such design leads to the development of three-component asymmetric sulfonylation involving direct functionalization of cycloalkanes, alkanes, toluene derivatives or ethers. The photochemical reaction of a C(sp3)-H precursor, a SO2 surrogate and a common α,β-unsaturated carbonyl compound proceeds smoothly under mild conditions, delivering a wide range of biologically interesting α-C chiral sulfones with high regio- and enantioselectivity (>50 examples, up to >50:1 rr and 95% ee). This method is applicable to late-stage functionalization of bioactive molecules, and provides an appealing access to enantioenriched compounds starting from the abundant hydrocarbon compounds.


2021 ◽  
pp. 088391152199784
Author(s):  
Nipun Jain ◽  
Shashi Singh

Development of an artificial tissue by tissue engineering is witnessed to be one of the long lasting clarified solutions for the damaged tissue function restoration. To accomplish this, a scaffold is designed as a cell carrier in which the extracellular matrix (ECM) performs a prominent task of controlling the inoculated cell’s destiny. ECM composition, topography and mechanical properties lead to different types of interactions between cells and ECM components that trigger an assortment of cellular reactions via diverse sensing mechanisms and downstream signaling pathways. The polysaccharides in the form of proteoglycans and glycoproteins yield better outcomes when included in the designed matrices. Glycosaminoglycan (GAG) chains present on proteoglycans show a wide range of operations such as sequestering of critical effector morphogens which encourage proficient nutrient contribution toward the growing stem cells for their development and endurance. In this review we discuss how the glycosylation aspects are of considerable importance in everyday housekeeping functions of a cell especially when placed in a controlled environment under ideal growth conditions. Hydrogels made from these GAG chains have been used extensively as a resorbable material that mimics the natural ECM functions for an efficient control over cell attachment, permeability, viability, proliferation, and differentiation processes. Also the incorporation of non-mammalian polysaccharides can elicit specific receptor responses which authorize the creation of numerous vigorous frameworks while prolonging the low cost and immunogenicity of the substance.


Author(s):  
Alif Chebbi ◽  
Massimiliano Tazzari ◽  
Cristiana Rizzi ◽  
Franco Hernan Gomez Tovar ◽  
Sara Villa ◽  
...  

Abstract Within the circular economy framework, our study aims to assess the rhamnolipid production from winery and olive oil residues as low-cost carbon sources by nonpathogenic strains. After evaluating various agricultural residues from those two sectors, Burkholderia thailandensis E264 was found to use the raw soluble fraction of nonfermented (white) grape marcs (NF), as the sole carbon and energy source, and simultaneously, reducing the surface tension to around 35 mN/m. Interestingly, this strain showed a rhamnolipid production up to 1070 mg/L (13.37 mg/g of NF), with a higher purity, on those grape marcs, predominately Rha-Rha C14-C14, in MSM medium. On olive oil residues, the rhamnolipid yield of using olive mill pomace (OMP) at 2% (w/v) was around 300 mg/L (15 mg/g of OMP) with a similar CMC of 500 mg/L. To the best of our knowledge, our study indicated for the first time that a nonpathogenic bacterium is able to produce long-chain rhamnolipids in MSM medium supplemented with winery residues, as sole carbon and energy source. Key points • Winery and olive oil residues are used for producing long-chain rhamnolipids (RLs). • Both higher RL yields and purity were obtained on nonfermented grape marcs as substrates. • Long-chain RLs revealed stabilities over a wide range of pH, temperatures, and salinities


Sign in / Sign up

Export Citation Format

Share Document