scholarly journals Performance Analysis of a New Electricity and Freshwater Production System Based on an Integrated Gasification Combined Cycle and Multi-Effect Desalination

2020 ◽  
Vol 12 (19) ◽  
pp. 7996 ◽  
Author(s):  
Farzad Hamrang ◽  
Afshar Shokri ◽  
S. M. Seyed Mahmoudi ◽  
Biuk Ehghaghi ◽  
Marc A. Rosen

Integrated biomass gasification combined cycles can be advantageous for providing multiple products simultaneously. A new electricity and freshwater generation system is proposed based on the integrated gasification and gas turbine cycle as the main system, and a steam Rankine cycle and multi-effect desalination system as the waste heat recovery units. To evaluate the performance of the system, energy, exergy, and economic analyses were performed. Also, a parametric analysis was performed to assess the effects of various parameters on the system’s performance criteria. The economic feasibility of the plant was analyzed in terms of net present value. For the base case, the performance metrics are evaluated as W.net=8.347 MW, ε=46.22%, SUCP=14.07 $/GJ, and m.fw=11.7 kg/s. Among all components of the system, the combustion chamber is the greatest contributor to the exergy destruction rate, at 3250 kW. It is shown with the parametric analysis that raising the combustion temperature leads to higher electricity and freshwater production capacity. For a fuel cost of 2 $/GJ and an electricity price of 0.07 $/kWh, the total net present value at the end of plant’s lifespan is 6.547×106 $, and the payback period is 6.75 years. Thus, the plant is feasible from an economic perspective.

Author(s):  
Leonardo Pierobon ◽  
Fredrik Haglind ◽  
Rambabu Kandepu ◽  
Alessandro Fermi ◽  
Nicola Rossetti

In off-shore oil and gas platforms the selection of the gas turbine to support the electrical and mechanical demand on site is often a compromise between reliability, efficiency, compactness, low weight and fuel flexibility. Therefore, recovering the waste heat in off-shore platforms presents both technological and economic challenges that need to be overcome. However, onshore established technologies such as the steam Rankine cycle, the air bottoming cycle and the organic Rankine cycle can be tailored to recover the exhaust heat off-shore. In the present paper, benefits and challenges of these three different technologies are presented, considering the Draugen platform in the North Sea as a base case. The Turboden 65-HRS unit is considered as representative of the organic Rankine cycle technology. Air bottoming cycles are analyzed and optimal design pressure ratios are selected. We also study a one pressure level steam Rankine cycle employing the once-through heat recovery steam generator without bypass stack. We compare the three technologies considering the combined cycle thermal efficiency, the weight, the net present value, the profitability index and payback time. Both incomes related to CO2 taxes and natural gas savings are considered. The results indicate that the Turboden 65-HRS unit is the optimal technology, resulting in a combined cycle thermal efficiency of 41.5% and a net present value of around 15 M$, corresponding to a payback time of approximately 4.5 years. The total weight of the unit is expected to be around 250 ton. The air bottoming cycle without intercooling is also a possible alternative due to its low weight (76 ton) and low investment cost (8.8 M$). However, cycle performance and profitability index are poorer, 12.1% and 0.75. Furthermore, the results suggest that the once-trough single pressure steam cycle has a combined cycle thermal efficiency of 40.8% and net present value of 13.5 M$. The total weight of the steam Rankine cycle is estimated to be around 170 ton.


2021 ◽  
Author(s):  
Adekunle Tirimisiyu Adeniyi ◽  
Miracle Imwonsa Osatemple ◽  
Abdulwahab Giwa

Abstract There are a good numbers of brown hydrocarbon reservoirs, with a substantial amount of bypassed oil. These reservoirs are said to be brown, because a huge chunk of its recoverable oil have been produced. Since a significant number of prominent oil fields are matured and the number of new discoveries is declining, it is imperative to assess performances of waterflooding in such reservoirs; taking an undersaturated reservoir as a case study. It should be recalled that Waterflooding is widely accepted and used as a means of secondary oil recovery method, sometimes after depletion of primary energy sources. The effects of permeability distribution on flood performances is of concerns in this study. The presence of high permeability streaks could lead to an early water breakthrough at the producers, thus reducing the sweep efficiency in the field. A solution approach adopted in this study was reserve water injection. A reverse approach because, a producing well is converted to water injector while water injector well is converted to oil producing well. This optimization method was applied to a waterflood process carried out on a reservoir field developed by a two - spot recovery design in the Niger Delta area of Nigeria that is being used as a case study. Simulation runs were carried out with a commercial reservoir oil simulator. The result showed an increase in oil production with a significant reduction in water-cut. The Net Present Value, NPV, of the project was re-evaluated with present oil production. The results of the waterflood optimization revealed that an increase in the net present value of up to 20% and an increase in cumulative production of up to 27% from the base case was achieved. The cost of produced water treatment for re-injection and rated higher water pump had little impact on the overall project economy. Therefore, it can conclude that changes in well status in wells status in an heterogenous hydrocarbon reservoir will increase oil production.


2019 ◽  
Vol 3 (2) ◽  
pp. 146
Author(s):  
Nur Rahmani ◽  
Akmal Lazuardy

The fish shelter port (TPI) is a need that needs to be prepared by local village officials and the government for every coastal village in Bengkalis Regency. This research was conducted in the Berancah village of Bantan District. The analysis in this study describes the economic feasibility mathematically for the construction of a fish storage port (TPI) by calculating the cost ratio (B / C ratio) benefit analysis, payback period (PP), net present value (NPV), and internal rate of return ( IRR). The results obtained from the NPV value (3,661,267,645), BCR value (0.943), IRR value of 10.01%, and PP are in the period of 30 years. Taken as a whole by standardizing the calculations, it can be concluded that the planned construction of a fish shelter in Berancah village is considered not economically feasible, but economic analysis is not merely a benchmark for feasibility, reviewed for the future many benefits will be received by the community around the location of the development plan so that it can improve the welfare of the community in Berancah village.


2021 ◽  
Vol 33 ◽  
pp. 05005
Author(s):  
Lily Susanti ◽  
Suyud Warno Utomo ◽  
Noverita Dian Takarina

Penaeus vannamei shrimp farming in Indonesia is faced with several challenges in the environmental, economic, and social aspects. Therefore, this study aims to assess the benefits of novel nanobubble aeration systems for the ecosystem, businesses, and communities. This is an experimental study conducted by comparing P. vannamei post larva 10 reared at a density of 2000 inds./L in a pond treated with nanobubble and without treatments (control). Furthermore, the Net Present Value (NPV) and payback period were calculated to assess the economic feasibility of nanobubble, while community interviews were used for the social sectors. Based on the results, environmental wastes of shrimp farming in form of total ammonia nitrogen (TAN) were reduced by 9% from 2.58 mg/l (95%CI: 0,91, 4,25) in control compared to 2.35 mg/l (95%CI: 0,86, 3,84) in treatment. Furthermore, the revenues from post larva sales for five years and nanobubble investment costs showed that the estimated NPV was IDR 64,824,374 with a payback period of 1.7 years. The interviews on traditional shrimp farming showed that 61.1% to 72.2% of community members agreed on the use of nanobubble aeration to support livelihoods. Therefore, the use of nanobubbles is feasible to support sustainable P. vannamei farming.


Author(s):  
Ju¨rgen Karl ◽  
Nadine Frank ◽  
Sotiris Karellas ◽  
Mathilde Saule ◽  
Ulrich Hohenwarter

Conversion of biomass in syngas by means of indirect gasification offers the option to improve the economic situation of any fuel cell systems due to lower costs for feedstock and higher power revenues in many European countries. The coupling of an indirect gasification of biomass and residues with highly efficient SOFC systems is therefore a promising technology for reaching economic feasibility of small decentralized combined heat and power production (CHP). The predicted efficiency of common high temperature fuel cell systems with integrated gasification of solid feedstock is usually significantly lower than the efficiency of fuel cells operated with hydrogen or methane. Additional system components like the gasifier, as well as the gas cleaning reduce this efficiency. Hence common fuel cell systems with integrated gasification of biomass will hardly reach electrical efficiencies above 30 percent. An extraordinary efficient combination is achieved in case that the fuel cells waste heat is used in an indirect gasification system. A simple combination of a SOFC and an allothermal gasifier enables then electrical efficiencies above 50%. But this systems requires an innovative cooling concept for the fuel cell stack. Another significant question is the influence of impurities on the fuel cells degradation. The European Research Project ‘BioCellus’ focuses on both questions — the influence of the biogenious syngas on the fuel cells and an innovative cooling concept based on liquid metal heat pipes. First experiments showed that in particular higher hydrocarbons — the so-called tars — do not have an significant influence on the performance of SOFC membranes. The innovative concept of the TopCycle comprises to heat an indirect gasifier with the exhaust heat of the fuel cell by means of liquid metal heat pipes. Internal cooling of the stack and the recirculation of waste heat increases the system efficiency significantly. This concept promises electrical efficiencies of above 50 percent even for small-scale systems without any combined processes.


2012 ◽  
Vol 608-609 ◽  
pp. 356-360
Author(s):  
Jin Zhuo Wu ◽  
Li Hai Wang

A mathematical model was developed to assess the economic feasibility of a biomass-based power plant in the Northeast of China. The objective of this model is to maximizes the net present value (NPV) of a biopower plant over its economic life, which subjects to the constraints of biomass availability, plant investment and operation & maintenance costs, plant capacity, transportation logistics, raw material and product pricing, financing, and business taxes. The model was applied in a biopower plant located in Wangkui County, China, which belongs to the National Bio-Energy Group Company Limited. Results showed that the maximum NPV of the Wangkui Biopower plant in the base case was approximately 117 million Yuan given the electricity sale price of 0.64 Yuan kWh-1 (or 0.75Yuan kWh-1 with tax). This study provides a reference for evaluating the economic feasibility of biopower plants based on biomass logistics networks in China.


2017 ◽  
Vol 2017 ◽  
pp. 1-6 ◽  
Author(s):  
Idiano D’Adamo ◽  
Michela Miliacca ◽  
Paolo Rosa

Cumulative photovoltaic (PV) power installed in 2016 was equal to 305 GW. Five countries (China, Japan, Germany, the USA, and Italy) shared about 70% of the global power. End-of-life (EoL) management of waste PV modules requires alternative strategies than landfill, and recycling is a valid option. Technological solutions are already available in the market and environmental benefits are highlighted by the literature, while economic advantages are not well defined. The aim of this paper is investigating the financial feasibility of crystalline silicon (Si) PV module-recycling processes. Two well-known indicators are proposed for a reference 2000 tons plant: net present value (NPV) and discounted payback period (DPBT). NPV/size is equal to −0.84 €/kg in a baseline scenario. Furthermore, a sensitivity analysis is conducted, in order to improve the solidity of the obtained results. NPV/size varies from −1.19 €/kg to −0.50 €/kg. The absence of valuable materials plays a key role, and process costs are the main critical variables.


2015 ◽  
Vol 64 (246) ◽  
pp. 123-130 ◽  
Author(s):  
A. A. C. O. Peres ◽  
A. A. Santos ◽  
C. A. B. Carvalho ◽  
N. Brandalise

The objective was to determine the economic feasibility and financial risk of different production systems for dairy heifers grazing on Xaraes pallisadgrass pasture, during the year, with roughage supplementation of sugarcane, during the autumn-winter and the supply of mineral mixture (commercial and selective). Each production system was characterized and quantified in accordance with the administrative and livestock realized during the period February 2006 to March 2008. The cash flows were constructed for production system in a horizon of 12 years, being applied discount rates of 6, 10, 14, 18 and 22 % per year. About the cash flows were determined economic indicators of profitability: net present value and internal rate of return. The sensitivity and financial risk analyzes were realized. The production systems showed positive net present value at a discount rate of 14 % per year, which reflects the return on capital invested, compared to savings accounts. The trading price of the heifer is the item of greatest influence on economic results. The production systems had low financial risk of becoming unviable, given the price fluctuations that occurred in the market. The production systems are financial viable to exploration.


2016 ◽  
Vol 36 (2) ◽  
pp. 242-252 ◽  
Author(s):  
Priscilla A. P. Ribeiro ◽  
Tadayuki Yanagi Junior ◽  
Joaquim P. da Silva ◽  
Sílvia de N. M Yanagi ◽  
Renato S. Campos

ABSTRACT Broiler poultry is highly dependent on artificial lightening. Power consumption costs of artificial lighting systems is the second largest expense related to broiler industry, second only to feed expenses. Therefore, the current study focused to analyze technical and economic feasibility of replacing incandescent lamps already used in aviaries with other lamp types. Costs related to power consumption, implementation and maintenance of the lighting systems were evaluated with the aid of financial mathematics using net present value, return over investment and payback. Systems composed of six lamp types were analyzed in two different configurations to meet the minimum illuminance of 5 and 20 lux and for use in conventional sheds and dark house. The lamps tested were incandescent (LI) of 100 W, compact fluorescent (CFL) of 34 W, mixed (ML) 160 W sodium vapor (SVL) of 70 W, tubular fluorescent T8 (TFL T8) of 40 W and tubular fluorescent T5 (TFL T5) of 28 W. For the systems tested, it was found that the tubular fluorescent lamps T8 and T5 showed the best results of technical and economic feasibility.


CERNE ◽  
2010 ◽  
Vol 16 (3) ◽  
pp. 335-345 ◽  
Author(s):  
Antonio Donizette de Oliveira ◽  
Ivonise Silva Andrade Ribeiro ◽  
José Roberto Soares Scolforo ◽  
José Márcio de Mello ◽  
José Luiz Pereira de Rezende

Candeia wood (Eremanthus erythropappus) is widely used for production of essential oil and its active ingredient, alpha-bisabolol, is consumed by both the cosmetics and pharmaceutical industry. This study aimed to determine the productivity and operating costs associated with exploration, transportation and commercialization of candeia timber obtained from sustainable management systems and used for oil production; to determine the gross income or revenue obtained from the sale of candeia timber; to analyze the economic feasibility of sustainable management of candeia. For the economic analysis, Net Present Value, Net Present Value over an infinite planning horizon, and Average Cost of Production methods were used. Results indicated that the most significant costs associated with candeia forest management involve transportation and exploration. Together they account for 64% of the total management cost. Candeia forest management for oil production is economically feasible, even in situations where the interest rate is high or timber price drops to levels well below currently effective prices. As far as candeia forest management is concerned, shorter harvest cycles allow higher profitability. However, even in situations where the harvest cycle is relatively long (30 years), the activity is still economically feasible.


Sign in / Sign up

Export Citation Format

Share Document