scholarly journals Fractionation of Cynara cardunculus L. by Acidified Organosolv Treatment for the Extraction of Highly Digestible Cellulose and Technical Lignin

2021 ◽  
Vol 13 (16) ◽  
pp. 8714
Author(s):  
Tommaso Giannoni ◽  
Mattia Gelosia ◽  
Alessandro Bertini ◽  
Giacomo Fabbrizi ◽  
Andrea Nicolini ◽  
...  

One of the primary targets for the new lignocellulosic feedstock-based biorefinery is the simultaneous valorization of holocellulose and lignin. Acidified organosolv treatment is among the most promising strategy for recovering technical lignin, water-soluble hemicellulose, and cellulose pulp with increased accessibility to hydrolytic enzymes. In this work, a design-of-experiment (DoE) approach was used to increase the cellulose recovery, digestibility, and the delignification of Cynara cardunculus L. feedstock. In the first treatment, the milled biomass was subjected to microwave-assisted extraction using an acidified GVL/water mixture to separate lignin and hemicellulose from cellulose. In the second treatment, the cellulose pulp was hydrolyzed by cellulolytic enzymes to demonstrate the enhanced digestibility. At the optimal condition (154 °C, 2.24% H2SO4, and 0.62 GVL/water ratio), the cellulose pulp showed a cellulose content of 87.59%, while the lignin content was lower than 8%. The cellulose recovery and digestibility were equal to 79.46% and 86.94%, respectively. About 40% of the initial hemicellulose was recovered as monosaccharides. This study demonstrated the effectiveness of the two-step organosolv treatment for biomass fractionation; however, as suggested by DoE analysis, a confirmative study at a low temperature (<154 °C) should be performed to further increase the cellulose recovery.

Energies ◽  
2020 ◽  
Vol 13 (16) ◽  
pp. 4195
Author(s):  
Mattia Gelosia ◽  
Alessandro Bertini ◽  
Marco Barbanera ◽  
Tommaso Giannoni ◽  
Andrea Nicolini ◽  
...  

Lignocellulosic biomass is a non-edible feedstock that can be used in integrated biorefinery for the production of biochemicals and biofuel. Among lignocellulosic biomass, Cynara cardunculus L. (cardoon) is a promising crop thanks to its low water and fertilizer demand. Organosolv is a chemical treatment that uses numerous organic or aqueous solvent mixtures, and a small amount of acid catalyst, in order to solubilize the lignin and hemicellulose fractions, making the cellulose accessible to hydrolytic enzymes. Lignocellulosic residues of cardoon underwent a two-step treatment process to obtain fermentable glucose. In the first step, the milled biomass was subjected to microwave-assisted extraction using an acidified γ-valerolactone (GVL)/water mixture, yielding a solid cellulose pulp. In the second step, the pre-treated material was hydrolyzed by cellulolytic enzymes to glucose. The first step was optimized by means of a two-level full factorial design. The investigated factors were process temperature, acid catalyst concentration, and GVL/water ratio. A glucose production equal to 30.17 g per 100 g of raw material (89% of the maximum theoretical yield) was achieved after conducting the first step at 150 °C using an acidified water solution (1.96% H2SO4w/w).


2016 ◽  
Vol 10 (2) ◽  
pp. 108
Author(s):  
Ganis Lukmandaru ◽  
Arsyi Rahman Mohammad ◽  
Pito Wargono ◽  
Vendy Eko Prasetyo

Penelitian ini bertujuan untuk mengeksplorasi sifat kimia kayu jati dari hutan rakyat Kabupaten Gunungkidul. Pohon (dbh 28-37 cm) diambil dari tempat tumbuh berbeda yaitu Nglipar, Panggang, dan Playen. Setiap tempat diambil 3 pohon sebagai ulangan dan sampel yang digunakan adalah disk yang diambil dari bagian pangkal. Penampang radial disk dibagi menjadi 3 bagian, yaitu gubal, teras luar, dan teras dalam. Sifat kimia yang diuji adalah kadar holoselulosa, á-selulosa, hemiselulosa, lignin, ekstraktif etanol-toluena, kelarutan dalam air panas, kelarutan dalam NaOH 1%, dan abu. Sebagai pembanding, digunakan kayu jati dewasa dari tegakan Randublatung (Perhutani). Kisaran nilai kimia dari komponen dinding sel kayu jati Gunungkidul adalah kadar holoselulosa 75,76-79,74%, á-selulosa 46,72-50,90%, hemiselulosa 27,41-30,14%, lignin 29,22-32,80%, dan kelarutan dalam NaOH 1% sebesar 16,43-17,35%. Selanjutnya, kadar ekstraktif etanol-toluena, kelarutan dalam air panas, dan abu adalah 5,04-10,77%, 2,74-7,85%, dan 0,60-1,66%, secara berurutan. Interaksi antara kedua faktor berpengaruh nyata pada kadar holoselulosa, á-selulosa, hemiselulosa, dan ekstraktif etanol-toluena. Faktor tempat tumbuh berpengaruh nyata pada kadar abu sedangkan faktor radial berpengaruh nyata pada kadar kelarutan dalam air panas dan abu. Kayu jati dari Gunungkidul memberikan nilai rerata kadar ekstraktif etanol-toluena dan abu yang lebih rendah sedangkan nilai di parameter lainnya masih dalam kisaran nilai kayu jati dari Randublatung.Kata kunci: Tectona grandis, sifat kimia, hutan rakyat, arah radial, Gunungkidul AbstractThis study aimed to explore the chemical properties of teak wood grown in community forests from Gunungkidul Regency. Trees (dbh 28-37 cm) were selected from three different sites i.e. Nglipar, Panggang, and Playen. Three trees were cut from each site and disks were taken from the base of the trees. The disk in radial cross section was divided into 3 parts: sapwood, outer heartwood, and inner heartwood. Chemical properties tested were holocellulose, á-cellulose, hemicellulose, lignin, ethanol-toluene extractives, hot-water soluble extractives, solubility in NaOH 1%, and ash contents. Mature teakwoods from Randublatung (Perhutani plantation) were used for comparison purpose.The values range of chemical composition in the cell wall components of the Gunungkidul teak wood were holocellulose content 75.76-79.74%, , á-cellulose content 46.72-50.90%, hemicellulose content 27.41-30.14%, lignin content 29.22-32.80%, and solubility in NaOH 1% 16.43-17.35%. Further, the ethanol-toluene extractive, hot-water soluble, and ash content values ranged from 5.04 to 10.77%, 2.74-7.85%, and 0.60-1.66%, consecutively. Interaction between two factors affects significantly to holocellulose, á-cellulose, hemicellulose, and ethanol-toluene extractive contents. The growth-site significantly influence on the ash contents as radial factor has significantly affect on the levels of hot water soluble extractives and ash content. The amounts of ethanol-toluene extractive and ash contents of Gunungkidul teak wood showed the lower values than those of teak from Randublatung. The values of other parameters were remain in the range of value of teak from Randublatung. 


2019 ◽  
Vol 135 ◽  
pp. 01004 ◽  
Author(s):  
Anatoly Iglovikov ◽  
Alexander Motorin

The paper presents the results of lysometric studies of the composition of organic matter of peat soils depending on the level of groundwater occurrence. It is established that the amount of bitumen in the arable layer (0.2 m) of medium-power peat soil at 0.5 m ground water level (UGV) is less by 1.65 % than at the depth of 1.0 m and by 4.34 % at 1.5 m. There is no specific dependence on the UHW downstream of the soil profile. The increase of groundwater depth from 0.5 to 1.5 m reduces the amount of water-soluble and easily hydrolyzed substances in the arable layer at 100 °C from 5.68 to 4.48 %. At the groundwater level of 0.5 m, the maximum presence (34.25 %) of substances hydrolysable by 2 % HCl was determined, which is 3.4–3.8 % higher than at 1–1.5 m. The maximum amount of humic acids in peat soil (32.05 %) is set at 0.5 m CKD. In the arable layer, the excess is 4.5 % in comparison with one and a half meters of groundwater. The amount of fulvic acids practically does not depend on the groundwater table and is within the range of 17.7–17.9 %. With the same botanical composition of peat, the increase in the depth of groundwater occurrence from 0.5 to 1.5 m reduces the content of hard-tohydrolyze 80 % of H2SO4 substances in the arable layer from 2.82 to 2.31 %. The number of compounds difficult to hydrolyze with acid is represented by 46–52 % cellulose and does not depend on the level of groundwater. The presence of lignin in peat is several times higher than the cellulose content. There is a dependence of decrease in the lignin content at increase in depth of occurrence of ground waters from 0.5 m (6.63 %) to 1.5 m (5.23 %).


2018 ◽  
Vol 6 (02) ◽  
pp. 105-120
Author(s):  
Muhammad Rouf Suprayogi ◽  
Annisa Mufida ◽  
Edwin Azwar

In composite science, desirable materials that are lighter but have the power and quality that can match or even exceed the material that has been there before. The purpose of this study was to investigate the effect of cellulose fiber addition from banana gedebok to tensile strength, compressive strength and damping of concrete composite sound. To achieve this objective, mixing of cellulose fibers with K-275 quality concrete mix with variation of 0% and 5% substitution in which the cellulose is varied in powder and wicker form. Delignification of lignin content from banana gedebok was done by soaking and drying method without any variation and yielding powder having cellulose content of 13,0388%, hemicellulose 18,2796% and lignin 0,6684%. This study produces concrete composites that have a tensile strength and a compressive strength lower than that of normal concrete. Normally reinforced concrete tensile strength value 94.5 kg / cm2, 71.4 kg / cm2 cellulose powder concrete and 90.3 kg / cm2 cellulose woven concrete. Normal concrete compressive strength value 334,22 kg / cm2, cellulose powder concrete 215,7 kg / cm2, and cellulose webbing concrete 157,98 kg / cm2. As for the power damping sound of cellulose webbing concrete has the highest damping power compared to other concrete with the absorbed sound intensity that is 52-68 dB


Molecules ◽  
2018 ◽  
Vol 23 (10) ◽  
pp. 2640 ◽  
Author(s):  
Maria Amaya Vergara ◽  
Melissa Cortés Gómez ◽  
Maria Restrepo Restrepo ◽  
Jorge Manrique Henao ◽  
Miguel Pereira Soto ◽  
...  

Fique fibers, native to Colombia, are traditionally used for ropes and bags. In the extraction of long fibers for these purposes, the same amount of short fibers is generated; the short fibers are then discarded in the soil or in landfills. This agro-industrial waste is cellulose-rich and can be potentially developed into new biobased products. As an alternative use for these fibers, viscose regenerated fibers with potential applications in the textile industry were developed. Fique waste fibers were pulped (to produce fique cellulose pulp, FCP) using a 33 design of experiment (DOE) to adjust the variables of the whitening treatment, and DOE analysis showed that time and hydrogen peroxide concentration do not have a significant effect on non-cellulosic remotion, unlike temperature. The behavior of this pulp in the production of viscose was compared against that of commercially available wood cellulose pulp (WCP). FCP showed a suitable cellulose content with a high degree of polymerization, which makes it a viable pulp for producing discontinuous viscose rayon filaments. Both pulps showed the same performance in the production of the viscose dope and the same chemical, thermal, and mechanical behavior after being regenerated.


2021 ◽  
Author(s):  
Yuting Zhu ◽  
Yuhe Liao ◽  
Luying Lu ◽  
Wei Lv ◽  
Jing Liu ◽  
...  

<a></a><a>Herein, we report the catalytic use of multifunctional CuO nanoparticles (NPs) to oxidatively fractionate lignocellulosic feedstock with dioxygen in aqueous NaOH under mild conditions . In presence of CuO NPs, lignocellulose is fractionated into three parts, overall yielding 90% carbon efficiency. Lignin is converted to up to 45.6 wt% in organic soluble aromatic aldehyde monomers, rich in vanillin and syringaldehyde, the value surpassing the theoretical one based on b-O-4 bond content, indicating significant cleavage of other ether bonds. All hemicellulose is selectively converted into water soluble small (di)acids, mainly to oxalic acid. Up to 81% of cellulose, in contrast, is obtained as a white crystalline residue with high cellulose purity (over 95%), which can readily be transformed into high quality nanocellulose, useful in many applications.</a>


2020 ◽  
Vol 21 (5) ◽  
Author(s):  
WHINY HARDIYATI ERLIANA ◽  
Tri Widjaja ◽  
ALI ALTWAY ◽  
LILY PUDJIASTUTI

Abstract. Erliana WH, Widjaja T, Altway A, Pudjiastuti L. 2020. Synthesis of lactic acid from sugar palm trunk waste (Arenga pinnata): Hydrolysis and fermentation studies. Biodiversitas 21: 2281-2288. The increasing problems of global energy and the environment are the main reasons for developing products with new techniques through green methods. Sugar palm trunk waste (SPTW) has potential as agricultural waste because of its abundant availability, but it is not used optimally. This study was aimed to determine the effect of various microorganisms on increasing lactic acid production by controlling pH and temperature conditions in the fermentation process. SPTW contains 43.88% cellulose, 7.24% hemicellulose, and 33.24% lignin. The lignin content in SPTW can inhibit reducing sugar formation; the pretreatment process should remove this content. In the study, the pretreatment process was conducted using acid-organosolv. In the acid pretreatment, 0.2 M H2SO4 was added at 120oC for 40 minutes; organosolv pretreatment using 30% ethanol (v/v) at 107oC for 33 minutes was able to increase cellulose content by 56.33% and decrease lignin content by 27.09%. The pretreatment was followed by an enzymatic hydrolysis process with a combination of commercial cellulase enzymes from Aspergillus niger (AN) and Trichoderma reesei (TR), with variations of 0:1, 1:0, 1:1, 1:2 and 2:1. The best reducing sugar concentration was obtained with an AN: TR ratio of 1:2 to form reducing sugar from cellulose. Subsequently, lactic acid fermentation was carried out using lactic acid bacteria at 37oC and pH 6 incubated for 48 hours. The highest lactic acid concentration (33.292 g/L) was obtained using a mixed culture of Lactobacillus rhamnosus and Lactobacillus brevis to convert reducing sugar become lactic acid.


Holzforschung ◽  
2016 ◽  
Vol 70 (3) ◽  
pp. 267-274 ◽  
Author(s):  
Tatsuya Shirai ◽  
Hiroyuki Yamamoto ◽  
Miyuki Matsuo ◽  
Mikuri Inatsugu ◽  
Masato Yoshida ◽  
...  

Abstract Ginkgo (Ginkgo biloba L.) forms thick, lignified secondary xylem in the cylindrical stem as in Pinales (commonly called conifers), although it has more phylogenetic affinity to Cycadales than to conifers. Ginkgo forms compression wood-like (CW-like) reaction wood (RW) in its inclined stem as it is the case in conifers. However, the distribution of growth stress is not yet investigated in the RW of ginkgo, and thus this tissue resulting from negative gravitropism is still waiting for closer consideration. The present study intended to fill this gap. It has been demonstrated that, indeed, ginkgo forms RW tissue on the lower side of the inclined stem, where the compressive growth stress (CGS) was generated. In the RW, the micorofibril angle in the S2 layer, the air-dried density, and the lignin content increased, whereas the cellulose content decreased. These data are quite similar to those of conifer CWs. The multiple linear regression analysis revealed that the CGS is significantly correlated by the changes in the aforementioned parameters. It can be safely concluded that the negative gravitropism of ginkgo is very similar to that of conifers.


Agriculture ◽  
2018 ◽  
Vol 8 (11) ◽  
pp. 170 ◽  
Author(s):  
Gerhard Gramss ◽  
Klaus-Dieter Voigt

Crossing annual cereals, legumes, and oilseeds with wild rhizomatous relatives is used to create perennial lines that fruit over 2–3 seasons. Contrary to annual crops, the year-round vegetation cover should contribute to carbon sequestration, soil formation, and root mineral preservation. Soil erosion, nutrient leaching, and labor expenses may be reduced. While deep-rooted grasses actually inhibit nitrate leaching, advantages in nutrient storage and soil formation are not yet shown. Therefore, the turnover of organics and minerals in the perennial goldenrod was compared with that of winter wheat between blooming and resprouting (28 February) by gravimetry and ICP-MS. From blooming (23 August) to harvest (13 November), goldenrod stalks of 10,070 (given in kg ha−1) lost 23% by dry weight (DW) and released 14.9/9.6/65.7 in NPK and 2193 in water-soluble organics via leaching and root exudation. Apart from a transient rise of 28.8 in N around 13 November, the stubble/rhizome system held CaKMg(N)P stable at a level avoiding metal stress from 23 August to 28 February. Filling seeds in wheat excluded net losses of minerals and organics from anthesis to harvest (23 July). Stubbles (16 cm) and spilt grains of 2890 represented 41.8/2.91/62.5 in NPK and lost 905 in biomass with 25.4/1.8/59.8 in NPK to the soil by 28 February. In wheat-maize rotations, ploughing was avoided until early March. Weeds and seedlings emerged from spilt grains replaced losses in stubble biomass, N, and P but left 40.5 in K unused to the soil. In wheat-wheat rotations, organics and minerals lost by the down-ploughed biomass were replenished by the next-rotation seedlings that left only 18.3 in K to the soil. In summary, off-season goldenrod rhizomes did not store excess minerals. The rate of mineral preservation corresponded with the quantity of the biomass irrespective of its perennial habit. Released water-soluble organics should foster microbial carbon formation and CO2 efflux while soil improving gains in humate C should depend on the lignin content of the decaying annual or perennial biomass. Clues for NPK savings by perennials were not found.


2019 ◽  
Vol 9 (13) ◽  
pp. 2685 ◽  
Author(s):  
Emily M. Geiger ◽  
Dibyendu Sarkar ◽  
Rupali Datta

Metal-contaminated soil could be sustainably used for biofuel feedstock production if the harvested biomass is amenable to bioethanol production. A 60-day greenhouse experiment was performed to evaluate (1) the potential of vetiver grass to phytostabilize soil contaminated with copper (Cu), and (2) the impact of Cu exposure on its lignocellulosic composition and downstream bioethanol production. Dilute acid pretreatment, enzymatic hydrolysis, and fermentation parameters were optimized sequentially for vetiver grass using response surface methodology (RSM). Results indicate that the lignocellulosic composition of vetiver grown on Cu-rich soil was favorably altered with a significant decrease in lignin and increase in hemicellulose and cellulose content. Hydrolysates produced from Cu exposed biomass achieved a significantly greater ethanol yield and volumetric productivity compared to those of the control biomass. Upon pretreatment, the hemicellulosic hydrolysate showed an increase in total sugars per liter by 204.7% of the predicted yield. After fermentation, 110% of the predicted ethanol yield was obtained for the vetiver grown on Cu-contaminated soil. By contrast, for vetiver grown on uncontaminated soil a 62.3% of theoretical ethanol yield was achieved, indicating that vetiver has the potential to serve the dual purpose of phytoremediation and biofuel feedstock generation on contaminated sites.


Sign in / Sign up

Export Citation Format

Share Document