scholarly journals Additional Solar System Gravitational Anomalies

Symmetry ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1696
Author(s):  
Les Coleman

This article is motivated by uncertainty in experimental determinations of the gravitational constant, G, and numerous anomalies of up to 0.5 percent in Newtonian gravitational force on bodies within the solar system. The analysis sheds new light through six natural experiments within the solar system, which draw on published reports and astrophysical databases, and involve laboratory determinations of G, orbital dynamics of the planets and the moons of Earth and Mars, and non-gravitational acceleration (NGA) of ‘Oumuamua and comets. In each case, values are known for all variables in Newton’s Law , except for the gravitational constant, G. Analyses determine the gravitational constant’s observed value, , which—across the six settings—varies with the mass of the smaller, moving body, m, so that . While further work is required, this examination shows a scale-related Newtonian gravity effect at scales from benchtop to Solar System, which contributes to the understanding of symmetry in gravity and has possible implications for Newton’s Laws, dark matter, and formation of structure in the universe.

2015 ◽  
Vol 8 (1) ◽  
pp. 1976-1981
Author(s):  
Casey McMahon

The principle postulate of general relativity appears to be that curved space or curved spacetime is gravitational, in that mass curves the spacetime around it, and that this curved spacetime acts on mass in a manner we call gravity. Here, I use the theory of special relativity to show that curved spacetime can be non-gravitational, by showing that curve-linear space or curved spacetime can be observed without exerting a gravitational force on mass to induce motion- as well as showing gravity can be observed without spacetime curvature. This is done using the principles of special relativity in accordance with Einstein to satisfy the reader, using a gravitational equivalence model. Curved spacetime may appear to affect the apparent relative position and dimensions of a mass, as well as the relative time experienced by a mass, but it does not exert gravitational force (gravity) on mass. Thus, this paper explains why there appears to be more gravity in the universe than mass to account for it, because gravity is not the resultant of the curvature of spacetime on mass, thus the “dark matter” and “dark energy” we are looking for to explain this excess gravity doesn’t exist.


Author(s):  
Karel Schrijver

How many planetary systems formed before our’s did, and how many will form after? How old is the average exoplanet in the Galaxy? When did the earliest planets start forming? How different are the ages of terrestrial and giant planets? And, ultimately, what will the fate be of our Solar System, of the Milky Way Galaxy, and of the Universe around us? We cannot know the fate of individual exoplanets with great certainty, but based on population statistics this chapter sketches the past, present, and future of exoworlds and of our Earth in general terms.


Author(s):  
Jan Zalasiewicz

This is the story of a single pebble. It is just a normal pebble, as you might pick up on holiday - on a beach in Wales, say. Its history, though, carries us into abyssal depths of time, and across the farthest reaches of space. This is a narrative of the Earth's long and dramatic history, as gleaned from a single pebble. It begins as the pebble-particles form amid unimaginable violence in distal realms of the Universe, in the Big Bang and in supernova explosions and continues amid the construction of the Solar System. Jan Zalasiewicz shows the almost incredible complexity present in such a small and apparently mundane object. Many events in the Earth's ancient past can be deciphered from a pebble: volcanic eruptions; the lives and deaths of extinct animals and plants; the alien nature of long-vanished oceans; and transformations deep underground, including the creations of fool's gold and of oil. Zalasiewicz demonstrates how geologists reach deep into the Earth's past by forensic analysis of even the tiniest amounts of mineral matter. Many stories are crammed into each and every pebble around us. It may be small, and ordinary, this pebble - but it is also an eloquent part of our Earth's extraordinary, never-ending story.


2021 ◽  
Vol 503 (4) ◽  
pp. 5091-5099
Author(s):  
Dragan Slavkov Hajdukovic ◽  
Sergej Walter

ABSTRACT In a recent paper, quantum vacuum was considered as a source of gravity, and the simplest, phenomenon, the gravitational polarization of the quantum vacuum by an immersed point-like body, was studied. In this paper, we have derived the effective gravitational charge density of the quantum vacuum, caused by two immersed point-like bodies. Among others, the obtained result proves that quantum vacuum can have regions with a negative effective gravitational charge density. Hence, quantum vacuum, the ‘ocean’ in which all matter of the Universe is immersed, acts as a complex fluid with a very variable gravitational charge density that might include both positive and negative densities; a crucial prediction that can be tested within the Solar system. In the general case of ${N \ge {\rm{3}}}$ point-like bodies, immersed in the quantum vacuum, the analytical solutions are not possible, and the use of numerical methods is inevitable. The key point is that an appropriate numerical method, for the calculation of the effective gravitational charge density of the quantum vacuum induced by N immersed bodies, might be crucial in description of galaxies, without the involvement of dark matter or a modification of gravity. The development of such a valuable numerical method, is not possible, without a previous (and in this study achieved) understanding of the impact of a two-body system.


2019 ◽  
Vol 127 ◽  
pp. 02009
Author(s):  
Boris Shevtsov

Nonlinear oscillations in the dynamic system of gravitational and material fields are considered. The problems of singularities and caustics in gravity, expansion and baryon asymmetry of the Universe, wave prohibition of collapse into black holes, and failure of the Big Bang concept are discussed. It is assumed that the effects of the expansion of the Universe are coupling with the reverse collapse of dark matter. This hypothesis is used to substantiate the vortex and fractal structures in the distribution of matter. A system of equations is proposed for describing turbulent and fluctuation processes in gravitational and material fields. Estimates of the di usion parameters of such a system are made in comparison with the gravitational constant.


1997 ◽  
Vol 12 (07) ◽  
pp. 1373-1384 ◽  
Author(s):  
P. R. Silva

An extension of the MIT bag model, developed to describe the strong interaction inside the hadronic matter (nucleons), is proposed as a means to account for the confinement of matter in the universe. The basic hypotheses of the MIT bag model are worked out in a very simplified way and are also translated in terms of the gravitational force. We call the nucleon "microcosmos" and the bag-universe "macrocosmos." We have found a vacuum pressure of 10-15 atm at the boundary of the bag-universe as compared with a pressure of 1029 atm at the boundary of the nucleon. Both universes are also analyzed in the light of Sciama's theory of inertia, which links the inertial mass of a body to its interaction with the rest of the universe. One of the consequences of this work is that the Weinberg mass can be interpreted as a threshold mass, namely the mass where the frequency of the small oscillations of a particle coupled to the universe matches its de Broglie frequency. Finally, we estimate an averaged density of matter in the universe, corresponding to [Formula: see text] of the critical or closure density.


2021 ◽  
pp. 87-93
Author(s):  
Abhijith Ram C ◽  
D Ajith

Space travel has always been a crucial task. Exploration and experimenting on Planets in our solar system will help us understand the universe better and also, we could find the origin of life. Rovers play an important role in finding these answers. The problem we have at present is not only with technology to explore the universe but also the ability of our rockets to carry rovers to other rocks. Since a large amount of fuel is required for Space travel, we end with very little cargo that can be sent to explore. As additive manufacturing started to play a vital part in Mechanical Science, we are going to try to use that tool to build a Generative design that helps in parts consolidation, weight reduction, increase flexibility, design optimisation and cost consolidation. Since weight is an important aspect, we could reduce the present rover weight and add additional scientific tools to the rover to increase its scope of search and applications. This project focuses on features enrichment in Rovers by optimizing rover weight and design using Design for Additive Manufacturing concept.


2018 ◽  
Vol 33 (40) ◽  
pp. 1850240
Author(s):  
Babur M. Mirza

We present here a general relativistic mechanism for accelerated cosmic expansion and the Hubble’s parameter. It is shown that spacetime vorticity coupled to the magnetic field density in galaxies causes the galaxies to recede from one another at a rate equal to the Hubble’s constant. We therefore predict an oscillatory universe, with zero curvature, without assuming violation of Newtonian gravity at large distances or invoking dark energy/dark matter hypotheses. The value of the Hubble’s constant, along with the scale of expansion, as well as the high isotropy of CMB radiation are deduced from the model.


2018 ◽  
Vol 10 (6) ◽  
pp. 15
Author(s):  
Zhonggang Li

Matter and energy are made up of the same basic particles. Why, then, is there a significant difference between matter and energy? This is because their basic particle compositions differ. The basic particle is the basic unit of mass and energy. Mass and energy conservations are essentially basic particle conversions. The basic particle is a vector, moving at the maximum velocity of the universe; however, after a substance tangibly solidifies, this velocity becomes zero. The velocity of a moving object is, thus, the ratio between the basic particles contributing to energy and those contributing to mass, and the direction of its velocity is determined by the basic particle directions. Electrons, photons, neutrons, protons, neutrinos, and other microscopic particles consist of basic particles. The total mass of a moving body increases with increasing velocity. This added mass is composed of basic particles provided by an external system. As relativity is a mathematical model, its equations may satisfy mathematical principles even though some of them may not represent objective physical facts; instead, these may simply be mathematical solutions without physical meanings.


2019 ◽  
Vol 3 (1) ◽  
pp. 65
Author(s):  
Anita Yuza Rahayu ◽  
Syuhendri Syuhendri ◽  
Ida Sriyanti

This research aims to analyze about conceptual understanding and misconceptions on material Newtonian Gravity of students physics education Sriwijaya University. Data collected by using test NGCI (Newtonian Gravity Concept Inventory), CRI (Certainty of Response Index), and Interview to discribed types of conceptual understanding students�. Analysis methods data used Descriptive qualitative technique. Based on the analysis CRI, this research find 28,51 % student understand the concept, 4,68 % understand the concept but not sure , 27,9% misconception, and 25,62 % not understand the concept. The most misconception occurs in sub concept the relations of mass to the gravitational force that is 49,65 %. This research can be used for basic research increase student conceptual understanding


Sign in / Sign up

Export Citation Format

Share Document