scholarly journals Recombination in Enteroviruses, a Multi-Step Modular Evolutionary Process

Viruses ◽  
2019 ◽  
Vol 11 (9) ◽  
pp. 859 ◽  
Author(s):  
Muslin ◽  
Kain ◽  
Bessaud ◽  
Blondel ◽  
Delpeyroux

RNA recombination is a major driving force in the evolution and genetic architecture shaping of enteroviruses. In particular, intertypic recombination is implicated in the emergence of most pathogenic circulating vaccine-derived polioviruses, which have caused numerous outbreaks of paralytic poliomyelitis worldwide. Recent experimental studies that relied on recombination cellular systems mimicking natural genetic exchanges between enteroviruses provided new insights into the molecular mechanisms of enterovirus recombination and enabled to define a new model of genetic plasticity for enteroviruses. Homologous intertypic recombinant enteroviruses that were observed in nature would be the final products of a multi-step process, during which precursor nonhomologous recombinant genomes are generated through an initial inter-genomic RNA recombination event and can then evolve into a diversity of fitter homologous recombinant genomes over subsequent intra-genomic rearrangements. Moreover, these experimental studies demonstrated that the enterovirus genome could be defined as a combination of genomic modules that can be preferentially exchanged through recombination, and enabled defining the boundaries of these recombination modules. These results provided the first experimental evidence supporting the theoretical model of enterovirus modular evolution previously elaborated from phylogenetic studies of circulating enterovirus strains. This review summarizes our current knowledge regarding the mechanisms of recombination in enteroviruses and presents a new evolutionary process that may apply to other RNA viruses.

2014 ◽  
Vol 2014 ◽  
pp. 1-15 ◽  
Author(s):  
Maria D. Pinazo-Durán ◽  
Francisco Gómez-Ulla ◽  
Luis Arias ◽  
Javier Araiz ◽  
Ricardo Casaroli-Marano ◽  
...  

Purpose. To review the proposed pathogenic mechanisms of age macular degeneration (AMD), as well as the role of antioxidants (AOX) and omega-3 fatty acids (ω-3) supplements in AMD prevention.Materials and Methods. Current knowledge on the cellular/molecular mechanisms of AMD and the epidemiologic/experimental studies on the effects of AOX andω-3 were addressed all together with the scientific evidence and the personal opinion of professionals involved in the Retina Group of the OFTARED (Spain).Results. High dietary intakes ofω-3 and macular pigments lutein/zeaxanthin are associated with lower risk of prevalence and incidence in AMD. The Age-Related Eye Disease study (AREDS) showed a beneficial effect of high doses of vitamins C, E, beta-carotene, and zinc/copper in reducing the rate of progression to advanced AMD in patients with intermediate AMD or with one-sided late AMD. The AREDS-2 study has shown that lutein and zeaxanthin may substitute beta-carotene because of its potential relationship with increased lung cancer incidence.Conclusion. Research has proved that elder people with poor diets, especially with low AOX andω-3 micronutrients intake and subsequently having low plasmatic levels, are more prone to developing AMD. Micronutrient supplementation enhances antioxidant defense and healthy eyes and might prevent/retard/modify AMD.


2016 ◽  
Vol 86 (5-6) ◽  
pp. 215-227 ◽  
Author(s):  
Aziz Homayouni-Rad ◽  
Ahmad-Reza Soroush ◽  
Leila Khalili ◽  
Leila Norouzi-Panahi ◽  
Zahra Kasaie ◽  
...  

Abstract. Diabetes mellitus, a multifactorial disorder, is related to the intestinal microbiota via numerous molecular mechanisms. The vast increase in the prevalence of diabetes and its associated complications requires a natural and safe solution. There is a growing evidence of gut microbiota effi ciency in improving insulin resistance, impaired insulin secretion, and metabolic complications in diabetic patients. Probiotics are defi ned as live microorganisms that, when ingested in adequate amounts, exert health benefi ts to the host. Probiotics can increase insulin sensitivity and reduce autoimmune responses by modulating intestinal microbiota and decreasing the infl ammatory reactions and oxidative stress. Recent evidences show that the intestinal microbiota infl uences the host through modulating intestinal permeability and mucosal immune response, manipulating eating behaviors by appetite-regulating hormones, including agouti related protein (AgRP), glucagon like peptide-1 (GLP-1) and neuropeptide Y, and controlling gut endocannabinoid (eCB) system which is now believed to be associated with infl ammation and diabetes. Moreover, intestinal microbiota control the host metabolism by affecting energy extraction from food and by biochemically converting molecules derived from the host or from gut microbes themselves. Experimental studies and clinical trials support the hypothesis that the modulation of the intestinal microbiota by probiotics, especially Lactobacillus and Bifidobacterium strains may be effective in prevention and management of diabetes. This review will highlight the current evidences in probiotic effectiveness and future prospects for exploring probiotic therapy in prevention and control of diabetes.


2020 ◽  
Vol 20 (3) ◽  
Author(s):  
Haya Alsammar ◽  
Daniela Delneri

ABSTRACT Saccharomyces cerevisiae is the most extensively studied yeast and, over the last century, provided insights on the physiology, genetics, cellular biology and molecular mechanisms of eukaryotes. More recently, the increase in the discovery of wild strains, species and hybrids of the genus Saccharomyces has shifted the attention towards studies on genome evolution, ecology and biogeography, with the yeast becoming a model system for population genomic studies. The genus currently comprises eight species, some of clear industrial importance, while others are confined to natural environments, such as wild forests devoid from human domestication activities. To date, numerous studies showed that some Saccharomyces species form genetically diverged populations that are structured by geography, ecology or domestication activity and that the yeast species can also hybridize readily both in natural and domesticated environments. Much emphasis is now placed on the evolutionary process that drives phenotypic diversity between species, hybrids and populations to allow adaptation to different niches. Here, we provide an update of the biodiversity, ecology and population structure of the Saccharomyces species, and recapitulate the current knowledge on the natural history of Saccharomyces genus.


2019 ◽  
Vol 26 (37) ◽  
pp. 6735-6749 ◽  
Author(s):  
Francisco Blanco-Vaca ◽  
Lídia Cedó ◽  
Josep Julve

Cancer is the second leading cause of death worldwide. Compelling evidence supports the hypothesis that the manipulation of dietary components, including plant compounds termed as phytochemicals, demonstrates certain important health benefits in humans, including those in cancer. In fact, beyond their well-known cardiovascular applications, phytosterols may also possess anticancer properties, as has been demonstrated by several studies. Although the mechanism of action by which phytosterols (and derivatives) may prevent cancer development is still under investigation, data from multiple experimental studies support the hypothesis that they may modulate proliferation and apoptosis of tumor cells. Phytosterols are generally considered safe for human consumption and may also be added to a broad spectrum of food matrices; further, they could be used in primary and secondary prevention. However, few interventional studies have evaluated the relationship between the efficacy of different types and forms of phytosterols in cancer prevention. In this context, the purpose of this review was to revisit and update the current knowledge on the molecular mechanisms involved in the anticancer action of phytosterols and their potential in cancer prevention or treatment.


Antioxidants ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 467
Author(s):  
Iveta Bernatova ◽  
Silvia Liskova

Various studies have shown that certain flavonoids, flavonoid-containing plant extracts, and foods can improve human health. Experimental studies showed that flavonoids have the capacity to alter physiological processes as well as cellular and molecular mechanisms associated with their antioxidant properties. An important function of flavonoids was determined in the cardiovascular system, namely their capacity to lower blood pressure and to improve endothelial function. (−)-Epicatechin and taxifolin are two flavonoids with notable antihypertensive effects and multiple beneficial actions in the cardiovascular system, but they also possess antiviral effects, which may be of particular importance in the ongoing pandemic situation. Thus, this review is focused on the current knowledge of (−)-epicatechin as well as (+)-taxifolin and/or (−)-taxifolin-modified biological action and underlining molecular mechanisms determined in preclinical studies, which are relevant not only to the treatment of hypertension per se but may provide additional antiviral benefits that could be relevant to the treatment of hypertensive subjects with SARS-CoV-2 infection.


1998 ◽  
Vol 62 (4) ◽  
pp. 1492-1553 ◽  
Author(s):  
John E. G. McCarthy

SUMMARY Studies of the budding yeast Saccharomyces cerevisiae have greatly advanced our understanding of the posttranscriptional steps of eukaryotic gene expression. Given the wide range of experimental tools applicable to S. cerevisiae and the recent determination of its complete genomic sequence, many of the key challenges of the posttranscriptional control field can be tackled particularly effectively by using this organism. This article reviews the current knowledge of the cellular components and mechanisms related to translation and mRNA decay, with the emphasis on the molecular basis for rate control and gene regulation. Recent progress in characterizing translation factors and their protein-protein and RNA-protein interactions has been rapid. Against the background of a growing body of structural information, the review discusses the thermodynamic and kinetic principles that govern the translation process. As in prokaryotic systems, translational initiation is a key point of control. Modulation of the activities of translational initiation factors imposes global regulation in the cell, while structural features of particular 5′ untranslated regions, such as upstream open reading frames and effector binding sites, allow for gene-specific regulation. Recent data have revealed many new details of the molecular mechanisms involved while providing insight into the functional overlaps and molecular networking that are apparently a key feature of evolving cellular systems. An overall picture of the mechanisms governing mRNA decay has only very recently begun to develop. The latest work has revealed new information about the mRNA decay pathways, the components of the mRNA degradation machinery, and the way in which these might relate to the translation apparatus. Overall, major challenges still to be addressed include the task of relating principles of posttranscriptional control to cellular compartmentalization and polysome structure and the role of molecular channelling in these highly complex expression systems.


2020 ◽  
Vol 48 (2) ◽  
pp. 429-439 ◽  
Author(s):  
Jorge Gago ◽  
Danilo M. Daloso ◽  
Marc Carriquí ◽  
Miquel Nadal ◽  
Melanie Morales ◽  
...  

Besides stomata, the photosynthetic CO2 pathway also involves the transport of CO2 from the sub-stomatal air spaces inside to the carboxylation sites in the chloroplast stroma, where Rubisco is located. This pathway is far to be a simple and direct way, formed by series of consecutive barriers that the CO2 should cross to be finally assimilated in photosynthesis, known as the mesophyll conductance (gm). Therefore, the gm reflects the pathway through different air, water and biophysical barriers within the leaf tissues and cell structures. Currently, it is known that gm can impose the same level of limitation (or even higher depending of the conditions) to photosynthesis than the wider known stomata or biochemistry. In this mini-review, we are focused on each of the gm determinants to summarize the current knowledge on the mechanisms driving gm from anatomical to metabolic and biochemical perspectives. Special attention deserve the latest studies demonstrating the importance of the molecular mechanisms driving anatomical traits as cell wall and the chloroplast surface exposed to the mesophyll airspaces (Sc/S) that significantly constrain gm. However, even considering these recent discoveries, still is poorly understood the mechanisms about signaling pathways linking the environment a/biotic stressors with gm responses. Thus, considering the main role of gm as a major driver of the CO2 availability at the carboxylation sites, future studies into these aspects will help us to understand photosynthesis responses in a global change framework.


2014 ◽  
Vol 1 (1) ◽  
pp. 68-71
Author(s):  
A. Gerilovych ◽  
B. Stegniy ◽  
A. Stegniy ◽  
M. Stegniy ◽  
K. Smietanka ◽  
...  

Objective. To research the molecular characteristics of two HPAI strains – A/Ch/Syvash/02/05/H5N1 and A/Ch/Krasnogvardeysk/58/08/H5N1, which were identifi ed as representatives of the highly pathogenic H5N1 viruses. Methods. RNA extraction, real-time polymerase chain reaction (PCR). Results. The phylogenetic studies revealed that the above mentioned strains belong to two various genetic lineages originated from the Eastern European strains isolated in 2005, but differ from the viruses introduced to the Central and Western Europe in 2005/2006, and also the lineages consisting of H5N1 viruses isolated in the Europe and Middle East in late 2007. Conclusions. Relying on experimental studies, it can be concluded that the strains of A/Ch/Syvash/02/05/H5N1 and A/Ch/Krasnogvardeysk/58/08/H5N1 are highly pathogenic.


2019 ◽  
Vol 20 (5) ◽  
pp. 376-389 ◽  
Author(s):  
Sonali Mishra ◽  
Nupur Srivastava ◽  
Velusamy Sundaresan ◽  
Karuna Shanker

Background: Decalepis arayalpathra (J. Joseph and V. Chandras.) Venter is used primarily for nutrition besides its therapeutic values. Traditional preparations/formulations from its tuber are used as a vitalizer and blood purifier drink. The folklore medicinal uses cover inflammation, cough, wound healing, antipyretic, and digestive system management. A comprehensive review of the current understanding of the plant is required due to emerging concerns over its safety and efficacy. Objective: The systematic collection of the authentic information from different sources with the critical discussion is summarised in order to address various issues related to botanical identity, therapeutic medicine, nutritional usage, phytochemical, and pharmacological potentials of the D. arayalpathra. Current use of traditional systems of medicine can be used to expand future research opportunities. Materials and Methods: Available scripted information was collected manually, from peered review research papers and international databases viz. Science Direct, Google Scholar, SciFinder, Scopus, etc. The unpublished resources which were not available in database were collected through the classical books of ‘Ayurveda’ and ‘Siddha’ published in regional languages. The information from books, Ph.D. and MSc dissertations, conference papers and government reports were also collected. We thoroughly screened the scripted information of classical books, titles, abstracts, reports, and full-texts of the journals to establish the reliability of the content. Results: Tuber bearing vanilla like signature flavor is due to the presence of 2-hydroxy-4-methoxybenzaldehyde (HMB). Among five other species, Decalepis arayalpathra (DA) has come under the ‘critically endangered’ category, due to over-exploitation for traditional, therapeutic and cool drink use. The experimental studies proved that it possesses gastro-protective, anti-tumor, and antiinflammatory activities. Some efforts were also made to develop better therapeutics by logical modifications in 2-Hydroxy-4-methoxy-benzaldehyde, which is a major secondary metabolite of D. arayalpathra. ‘Amruthapala’ offers the enormous opportunity to develop herbal drink with health benefits like gastro-protective, anti-oxidant and anti-inflammatory actions. Results: The plant has the potential to generate the investigational new lead (IND) based on its major secondary metabolite i.e. 2-Hydroxy-4-methoxy-benzaldehyde. The present mini-review summarizes the current knowledge on Decalepis arayalpathra, covering its phytochemical diversity, biological potentials, strategies for its conservation, and intellectual property rights (IPR) status. Chemical Compounds: 2-hydroxy-4-methoxybenzaldehyde (Pubchem CID: 69600), α-amyrin acetate (Pubchem CID: 293754), Magnificol (Pubchem CID: 44575983), β-sitosterol (Pubchem CID: 222284), 3-hydroxy-p-anisaldehyde (Pubchem CID: 12127), Naringenin (Pubchem CID: 932), Kaempferol (Pubchem CID: 5280863), Aromadendrin (Pubchem CID: 122850), 3-methoxy-1,2-cyclopentanedione (Pubchem CID: 61209), p-anisaldehyde (Pubchem CID: 31244), Menthyl acetate (Pubchem CID: 27867), Benzaldehyde (Pubchem CID: 240), p-cymene (Pubchem CID: 7463), Salicylaldehyde (Pubchem CID: 6998), 10-epi-γ-eudesmol (Pubchem CID: 6430754), α -amyrin (Pubchem CID: 225688), 3-hydroxy-4-methoxy benzaldehyde (Pubchem CID: 12127).


2020 ◽  
Vol 20 (4) ◽  
pp. 247-258 ◽  
Author(s):  
Hajra Takala ◽  
Qiwei Yang ◽  
Ahmed M. Abd El Razek ◽  
Mohamed Ali ◽  
Ayman Al-Hendy

Lifestyle factors, such as alcohol intake, have placed a substantial burden on public health. Alcohol consumption is increasing globally due to several factors including easy accessibility of this addictive substance besides its legal status and social acceptability. In the US, alcohol is the third leading preventable cause of death (after tobacco, poor diet and physical inactivity) with an estimated 88,000 people dying from alcohol-related causes annually, representing 1 in 10 deaths among working adults. Furthermore, the economic burden of excess drinking costs the US around $249 billion ($191.1 billion related to binge drinking). Although men likely drink more than women do, women are at much higher risk for alcohol-related problems. Alcohol use is also considered to be one of the most common non-communicable diseases, which affects reproductive health. This review article summarizes the current knowledge about alcohol-related pathogenesis of uterine fibroids (UFs) and highlights the molecular mechanisms that contribute to the development of UFs in response to alcohol consumption. Additionally, the effect of alcohol on the levels of various factors that are involved in UFs pathogenesis, such as steroid hormones, growth factors and cytokines, are summarized in this review. Animal studies of deleterious alcohol effect and future directions are discussed as well.


Sign in / Sign up

Export Citation Format

Share Document