scholarly journals Alveolar-like Macrophages Attenuate Respiratory Syncytial Virus Infection

Viruses ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 1960
Author(s):  
Bárbara N. Porto ◽  
Michael L. Litvack ◽  
Yuchen Cen ◽  
Irene Lok ◽  
Sheena Bouch ◽  
...  

Respiratory Syncytial Virus (RSV) is the leading cause of acute lower respiratory infections in young children and infection has been linked to the development of persistent lung disease in the form of wheezing and asthma. Despite substantial research efforts, there are no RSV vaccines currently available and an effective monoclonal antibody targeting the RSV fusion protein (palivizumab) is of limited general use given the associated expense. Therefore, the development of novel approaches to prevent RSV infection is highly desirable to improve pediatric health globally. We have developed a method to generate alveolar-like macrophages (ALMs) from pluripotent stem cells. These ALMs have shown potential to promote airway innate immunity and tissue repair and so we hypothesized that ALMs could be used as a strategy to prevent RSV infection. Here, we demonstrate that ALMs are not productively infected by RSV and prevent the infection of epithelial cells. Prevention of epithelial infection was mediated by two different mechanisms: phagocytosis of RSV particles and release of an antiviral soluble factor different from type I interferon. Furthermore, intratracheal administration of ALMs protected mice from subsequent virus-induced weight loss and decreased lung viral titres and inflammation, indicating that ALMs can impair the pathogenesis of RSV infection. Our results support a prophylactic role for ALMs in the setting of RSV infection and warrant further studies on stem cell-derived ALMs as a novel cell-based therapy for pulmonary viral infections.

Viruses ◽  
2018 ◽  
Vol 10 (12) ◽  
pp. 716 ◽  
Author(s):  
Junsu Ban ◽  
Na-Rae Lee ◽  
Noh-Jin Lee ◽  
Jong Kil Lee ◽  
Fu-Shi Quan ◽  
...  

Respiratory syncytial virus (RSV) causes severe acute lower respiratory tract disease. Retinoic acid-inducible gene-I (RIG-I) serves as an innate immune sensor and triggers antiviral responses upon recognizing viral infections including RSV. Since tripartite motif-containing protein 25 (TRIM25)-mediated K63-polyubiquitination is crucial for RIG-I activation, several viruses target initial RIG-I activation through ubiquitination. RSV NS1 and NS2 have been shown to interfere with RIG-I-mediated antiviral signaling. In this study, we explored the possibility that NS1 suppresses RIG-I-mediated antiviral signaling by targeting TRIM25. Ubiquitination of ectopically expressed RIG-I-2Cards domain was decreased by RSV infection, indicating that RSV possesses ability to inhibit TRIM25-mediated RIG-I ubiquitination. Similarly, ectopic expression of NS1 sufficiently suppressed TRIM25-mediated RIG-I ubiquitination. Furthermore, interaction between NS1 and TRIM25 was detected by a co-immunoprecipitation assay. Further biochemical assays showed that the SPRY domain of TRIM25, which is responsible for interaction with RIG-I, interacted sufficiently with NS1. Suppression of RIG-I ubiquitination by NS1 resulted in decreased interaction between RIG-I and its downstream molecule, MAVS. The suppressive effect of NS1 on RIG-I signaling could be abrogated by overexpression of TRIM25. Collectively, this study suggests that RSV NS1 interacts with TRIM25 and interferes with RIG-I ubiquitination to suppress type-I interferon signaling.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Abate Yeshidinber Weldetsadik ◽  
Frank Riedel

Abstract Background Respiratory Syncytial Virus (RSV) is the commonest cause of acute lower respiratory infections (ALRI) in infants. However, the burden of RSV is unknown in Ethiopia. We aimed to determine the prevalence, seasonality and predictors of RSV infection in young infants with ALRI for the first time in Ethiopia. Methods We performed RSV immuno-chromatographic assay from nasopharyngeal swabs of infants, 29 days to 6 months of age. We included the first 10 eligible infants in each month from June 2018 to May 2019 admitted in a tertiary pediatric center. Clinical, laboratory and imaging data were also collected, and chi-square test and regression were used to assess associated factors with RSV infection. Results Among a total of 117 study children, 65% were male and mean age was 3 months. Bronchiolitis was the commonest diagnosis (49%). RSV was isolated from 26 subjects (22.2%) of all ALRI, 37% of bronchiolitis and 11% of pneumonia patients. Although RSV infection occurred year round, highest rate extended from June to November. No clinical or laboratory parameter predicted RSV infection and only rainy season (Adjusted Odds Ratio (AOR) 10.46 [95%. C.I. 1.95, 56.18]) was independent predictor of RSV infection. Conclusions RSV was isolated in a fifth of young infants with severe ALRI, mostly in the rainy season. Diagnosis of RSV infection in our setting require specific tests as no clinical parameter predicted RSV infection. Since RSV caused less than a quarter of ALRI in our setting, the other causes should be looked for in future studies.


2015 ◽  
Vol 2015 ◽  
pp. 1-7 ◽  
Author(s):  
Ma. Del Rocío Baños-Lara ◽  
Boyang Piao ◽  
Antonieta Guerrero-Plata

Mucins (MUC) constitute an important component of the inflammatory and innate immune response. However, the expression of these molecules by respiratory viral infections is still largely unknown. Respiratory syncytial virus (RSV) and human metapneumovirus (hMPV) are two close-related paramyxoviruses that can cause severe low respiratory tract disease in infants and young children worldwide. Currently, there is not vaccine available for neither virus. In this work, we explored the differential expression of MUC by RSV and hMPV in human epithelial cells. Our data indicate that the MUC expression by RSV and hMPV differs significantly, as we observed a stronger induction of MUC8, MUC15, MUC20, MUC21, and MUC22 by RSV infection while the expression of MUC1, MUC2, and MUC5B was dominated by the infection with hMPV. These results may contribute to the different immune response induced by these two respiratory viruses.


Pathogens ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 47
Author(s):  
Catalina A. Andrade ◽  
Alexis M. Kalergis ◽  
Karen Bohmwald

Respiratory infections are among the major public health burdens, especially during winter. Along these lines, the human respiratory syncytial virus (hRSV) is the principal viral agent causing acute lower respiratory tract infections leading to hospitalization. The pulmonary manifestations due to hRSV infection are bronchiolitis and pneumonia, where the population most affected are infants and the elderly. However, recent evidence suggests that hRSV infection can impact the mother and fetus during pregnancy. Studies have indicated that hRSV can infect different cell types from the placenta and even cross the placenta barrier and infect the fetus. In addition, it is known that infections during the gestational period can lead to severe consequences for the development of the fetus due not only to a direct viral infection but also because of maternal immune activation (MIA). Furthermore, it has been described that the development of the central nervous system (CNS) of the fetus can be affected by the inflammatory environment of the uterus caused by viral infections. Increasing evidence supports the notion that hRSV could invade the CNS and infect nervous cells, such as microglia, neurons, and astrocytes, promoting neuroinflammation. Moreover, it has been described that the hRSV infection can provoke neurological manifestations, including cognitive impairment and behavioral alterations. Here, we will review the potential effect of hRSV in brain development and the potential long-term neurological sequelae.


PEDIATRICS ◽  
1978 ◽  
Vol 62 (5) ◽  
pp. 728-732
Author(s):  
Caroline Breese Hall ◽  
Joyce M. Geiman ◽  
R. Gordon Douglas ◽  
Mary Pat Meagher

We evaluated methods to control the spread of respiratory syncytial virus (RSV) on our infants' ward during a community outbreak of RSV infection. Methods included isolation and cohorting of infected infants, strict handwashing, use of gowns, and the cohorting of staff to the ill infants. Of 123 infants studied, 36 were admitted with RSV infections. Of the remaining 87 contact infants, eight (19%) acquired nosocomial RSV disease. Three of the eight developed pneumonia and one died. Of the 43 staff members, 24 (56%) became infected and 82% were symptomatic. Four acquired repeated infections within weeks of the initial infection. Studies a year previously had revealed that 45% of contact infants and 42% of the staff had acquired nosocomial RSV infections. Thus, the employed procedures appeared to have decreased the transmission of RSV to infants but not to the staff. Staff may continue to be infected by large droplets from close contact with ill infants or by self-inoculation of contaminated secretions.


2018 ◽  
Vol 92 (15) ◽  
Author(s):  
Philippa Hillyer ◽  
Rachel Shepard ◽  
Megan Uehling ◽  
Mina Krenz ◽  
Faruk Sheikh ◽  
...  

ABSTRACT Respiratory syncytial virus (RSV) infects small foci of respiratory epithelial cells via infected droplets. Infection induces expression of type I and III interferons (IFNs) and proinflammatory cytokines, the balance of which may restrict viral replication and affect disease severity. We explored this balance by infecting two respiratory epithelial cell lines with low doses of recombinant RSV expressing green fluorescent protein (rgRSV). A549 cells were highly permissive, whereas BEAS-2B cells restricted infection to individual cells or small foci. After infection, A549 cells expressed higher levels of IFN-β-, IFN-λ-, and NF-κB-inducible proinflammatory cytokines. In contrast, BEAS-2B cells expressed higher levels of antiviral interferon-stimulated genes, pattern recognition receptors, and other signaling intermediaries constitutively and after infection. Transcriptome analysis revealed that constitutive expression of antiviral and proinflammatory genes predicted responses by each cell line. These two cell lines provide a model for elucidating critical mediators of local control of viral infection in respiratory epithelial cells. IMPORTANCE Airway epithelium is both the primary target of and the first defense against respiratory syncytial virus (RSV). Whether RSV replicates and spreads to adjacent epithelial cells depends on the quality of their innate immune responses. A549 and BEAS-2B are alveolar and bronchial epithelial cell lines, respectively, that are often used to study RSV infection. We show that A549 cells are permissive to RSV infection and express genes characteristic of a proinflammatory response. In contrast, BEAS-2B cells restrict infection and express genes characteristic of an antiviral response associated with expression of type I and III interferons. Transcriptome analysis of constitutive gene expression revealed patterns that may predict the response of each cell line to infection. This study suggests that restrictive and permissive cell lines may provide a model for identifying critical mediators of local control of infection and stresses the importance of the constitutive antiviral state for the response to viral challenge.


2007 ◽  
Vol 81 (11) ◽  
pp. 5958-5967 ◽  
Author(s):  
Riny Janssen ◽  
Jeroen Pennings ◽  
Hennie Hodemaekers ◽  
Annemarie Buisman ◽  
Marijke van Oosten ◽  
...  

ABSTRACT Respiratory syncytial virus (RSV) is a common cause of severe lower respiratory tract infection in children. Severe RSV disease is related to an inappropriate immune response to RSV resulting in enhanced lung pathology which is influenced by host genetic factors. To gain insight into the early pathways of the pathogenesis of and immune response to RSV infection, we determined the transcription profiles of lungs and lymph nodes on days 1 and 3 after infection of mice. Primary RSV infection resulted in a rapid but transient innate, proinflammatory response, as exemplified by the induction of a large number of type I interferon-regulated genes and chemokine genes, genes involved in inflammation, and genes involved in antigen processing. Interestingly, this response is much stronger on day 1 than on day 3 after infection, indicating that the strong transcriptional response in the lung precedes the peak of viral replication. Surprisingly, the set of down-regulated genes was small and none of these genes displayed strong down-regulation. Responses in the lung-draining lymph nodes were much less prominent than lung responses and are suggestive of NK cell activation. Our data indicate that at time points prior to the peak of viral replication and influx of inflammatory cells, the local lung response, measured at the transcriptional level, has already dampened down. The processes and pathways induced shortly after RSV infection can now be used for the selection of candidate genes for human genetic studies of children with severe RSV infection.


Antioxidants ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 67
Author(s):  
Maria Ansar ◽  
Yue Qu ◽  
Teodora Ivanciuc ◽  
Roberto P. Garofalo ◽  
Antonella Casola

Respiratory syncytial virus (RSV) infection in mouse and human lung is associated with pathogenic inflammation and oxidative injury. RSV impairs antioxidant responses by increasing the degradation of transcription factor NF-E2-related factor 2 (NRF2), which controls the expression of several antioxidant enzymes (AOEs). In addition to its protective effects, type I IFNs have been increasingly recognized as important mediators of host pathogenic responses during acute respiratory viral infections. We used a mouse model of RSV infection to investigate the effect of lack of type I interferon (IFN) receptor on viral-mediated clinical disease, airway inflammation, NRF2 expression, and antioxidant defenses. In the absence of type I IFN signaling, RSV-infected mice showed significantly less body weight loss and airway obstruction, as well as a significant reduction in cytokine and chemokine secretion and airway inflammation. Lack of type I IFN receptor was associated with greatly reduced virus-induced promyelocytic leukemia lung protein expression, which we showed to be necessary for virus-induced NRF2 degradation in a cell model of infection, resulting in restoration of NRF2 levels, AOE expression, and airway antioxidant capacity. Our data support the concept that modulation of type I IFN production and/or signaling could represent an important therapeutic strategy to ameliorate severity of RSV-induced lung disease.


2019 ◽  
Vol 3 (1) ◽  
pp. e000409
Author(s):  
Jacqueline Le Geyt ◽  
Stephanie Hauck ◽  
Mark Lee ◽  
Jennifer Mackintosh ◽  
Jessica Slater ◽  
...  

Acute respiratory infections (ARIs) are a leading cause of under-five mortality globally. In Kenya, the reported prevalence of respiratory syncytial virus (RSV) infections in single-centre studies has varied widely. Our study sought to determine the prevalence of RSV infection in children admitted with ARI fulfilling the WHO criteria for bronchiolitis. This was a prospective cross-sectional prevalence study in five hospitals across central and highland Kenya from April to June 2015. Two hundred and thirty-four participants were enrolled. The overall RSV positive rate was 8.1%, which is lower than in previous Kenyan studies. RSV-positive cases were on average 5 months younger than RSV-negative cases.


Sign in / Sign up

Export Citation Format

Share Document