scholarly journals DETERMINATION OF DESIGN PARAMETERS OF A STEP DISK MILL

Author(s):  
I. Semikopenko ◽  
V. Voronov ◽  
S. Latyshev ◽  
V. Sevost'yanov ◽  
L. Rybak ◽  
...  

The calculation of the design parameters of a disc mill equipped with a feeder made in the form of a conical hopper is given. For shredders of the disintegrator type, it is very important to ensure the uniformity of loading of the crushed material of the working zone of active impact on particles. In addition, the most important factor is the throughput capacity of all sections of the grinding plant. The throughput should be determined by the design and technological parameters of the working chamber of the mill. Its overload can lead to a blockage of the working chamber, and insufficient throughput will negatively affect the intensity and effectiveness of the impact on the particles of the material. For example, insufficient concentration of particles in the secondary zone of the grinding chamber leads to a decrease in the efficiency of mutual abrasion. The article attempts to determine the design and technological parameters in the loading and accelerating parts of the disk mill. At the same time, it is necessary to coordinate the throughput of the disk spreader and the volumetric flow rate of the material particles flowing from the hopper. In this case, it is advisable to take into account that as a result of a rather high rotational speed and the size of the initial particles, with the wrong height of the radial blade of the spreader, material particles can roll over the radial blades, which leads to a delay of the material in the zone of the spreading disc. Therefore, it is necessary to determine the calculation formulas for finding the required height of the radial blade of the spreading disc, depending on the size of the initial particles. The formula demonstrates that the height of the separating blade depends on the particle size, the speed of rotation of the disks and the distance to the point of meeting of the particle with the radial blade.

Author(s):  
I. Semikopenko ◽  
V. Voronov ◽  
S. Latyshev ◽  
V. Sevost'yanov ◽  
L. Rybak ◽  
...  

The calculation of the design parameters of a disc mill equipped with a feeder made in the form of a conical hopper is given. For shredders of the disintegrator type, it is very important to ensure the uniformity of loading of the crushed material of the working zone of active impact on particles. In addition, the most important factor is the throughput capacity of all sections of the grinding plant. The throughput should be determined by the design and technological parameters of the working chamber of the mill. Its overload can lead to a blockage of the working chamber, and insufficient throughput will negatively affect the intensity and effectiveness of the impact on the particles of the material. For example, insufficient concentration of particles in the secondary zone of the grinding chamber leads to a decrease in the efficiency of mutual abrasion. The article attempts to determine the design and technological parameters in the loading and accelerating parts of the disk mill. At the same time, it is necessary to coordinate the throughput of the disk spreader and the volumetric flow rate of the material particles flowing from the hopper. In this case, it is advisable to take into account that as a result of a rather high rotational speed and the size of the initial particles, with the wrong height of the radial blade of the spreader, material particles can roll over the radial blades, which leads to a delay of the material in the zone of the spreading disc. Therefore, it is necessary to determine the calculation formulas for finding the required height of the radial blade of the spreading disc, depending on the size of the initial particles. The formula demonstrates that the height of the separating blade depends on the particle size, the speed of rotation of the disks and the distance to the point of meeting of the particle with the radial blade.


Author(s):  
Saif Mohammad Ishraq Bari ◽  
Louis G. Reis ◽  
Gergana G. Nestorova

Abstract The design of highly sensitive thermoelectric microfluidic sensors for the characterization of biochemical processes is an important area of engineering research. This study reports the design and fabrication of a continuous-flow biosensor with an integrated thermopile and three-dimensional numerical analysis of the critical design parameters that significantly increase the detection sensitivity of the platform. The paper discusses the impact of volumetric flowrate, channel height, material thermal properties, and heat sink on the magnitude of the thermoelectric signal. In the platform understudy, the heat generated by the enzymatic reaction between glucose oxidase-conjugated antibody and glucose is converted to an electric output by an antimony-bismuth thin-film thermopile with a theoretical Seebeck coefficient of 7.14 µV mK−1. Since this experimental configuration has been implemented in a various biochemical analysis, particular emphasis in this work is maximizing the detection sensitivity of the device. Computational thermal modeling was performed to investigate the impact of channel height (50 µm, 100 µm, 150 µm, and 200 µm), the volumetric flow rate of the substrate (25 µL min−1 and 50 µL min−1), and the microdevice material (glass, PMMA, and PDMS) on the output of the thermoelectric sensor. Experimental data validated the model and provided an excellent correlation between the predicted and measured voltage output. Results show that fabricating the calorimeter out of materials with lower thermal diffusivity, reducing the channel height, and eliminating the heat sink at the reference junction of the thermopile increases the sensitivity of the platform by 783%.


Author(s):  
Ihor Babyn ◽  
Anatoliy Hrytsun

An analysis of the technical solutions of milking machines with controlled vacuum mode and theoretical studies of the operation of the milking machine actuator, which allows to reduce the vacuum load on the udder and the impact on the sphincter of the cervix and prevent "idle" milking in high vacuum in the machine process. The completeness of milking cows and reducing the incidence of their mastitis depends to some extent on the operation of milking equipment. Performance indicators of the technological process of serial milking equipment do not always fully comply with the current zootechnical requirements. During their work at the beginning and at the end of the milking of the animal there may be a process of "idle" milking at high vacuum, which often leads to the disease of animals with mastitis and subsequent culling. Along with the increase in milk production, quality is becoming extremely important. The analysis of the known technical solutions of milking machines with a controlled mode of milking shows that the domestic and foreign industry do not produce milking machines with a controlled mode of milking, which fully correspond to the physiology of animals. In our opinion, the most effective one is to consider a milking machine with a low-inertial milk flow sensor, which controls the vacuum mode, both in poddyah and interstitial chambers of milking glasses. Conducted theoretical studies of the working process of machine milking allowed to systematize the engineering calculation method of milking machine with a controlled mode of operation and to determine the optimal design parameters of the actuators. The analytical expressions obtained characterize the influence of their parameters and mode of operation on the dynamics of milk production during machine milking of cows.


Author(s):  
I. I. Chudyk ◽  
A. M. Livinskyi ◽  
Achmed Al Tanakchy ◽  
A. M. Pastuch ◽  
Elnur Nuruzade

This scientific publication proposes a new method for assessing the impact of technical and technological parameters of oriented slick assemblies and assemblies with one stabilizer on their passage in the directional well. The analysis of possible cases of contact of elements of oriented assemblies with well walls is carried out. According to the results of this analysis a number of mathematical models of oriented bottom hole assemblies for calculating the power parameters of the interaction of their elements with the well walls during descent into a well with an arbitrary zenith angle are developed. Using the developed mathematical models, a study of the influence of the design parameters of the oriented assemblies on their axial passage in the wellbore to prevent of their jamming has been carried out. The calculated mathematical models of the assemblies are based on the method of differential equations of second order. The research is focused on obtaining the value of the conditional diameter of the assembly, taking into account its deformation from the effect of the transverse component of the weight. On the example of oriented slick assemblies and those with one stabilizers on the basis of the mud motor, a calculation of the value of the conditional diameter of the assembly and the diameter of the stabilizer from the condition of observing the optimal diameter of the assembly has been performed. According to the results of analytical studies on the example of slick assemblies and assemblies with one stabilizer, using the developed approach, the authors have established the following: conditions for their free passage in the wellbore along the entire range of the zenith angle change; the necessity to control the passage and axial displacement of the oriented assemblies in the performance of tripping operations; the dependency of the value of the "conditional" diameter of the oriented assembly on the position of the bent angle of the toolface to the well trajectory. In particular, in the upper position of the bent angle of the toolface, the "conditional" diameter of the assembly is smaller than in the lower position, and an increase of the zenith angle of the wellbore leads to a decrease in the "conditional" diameter of the oriented assembly due to its laying under the action of the transverse component of the weight.


Author(s):  
Юрий Зубарев ◽  
Yuriy Zubarev ◽  
Александр Приемышев ◽  
Alexsandr Priyomyshev

Tool materials used for polymeric composite blank machining, kinds of tool material wear arising at machining these blanks, and also the impact of technological parameters upon tool wear are considered. The obtained results allow estimating the potentialities of physical models at polymeric composite blanks cutting.


2021 ◽  
Vol 17 (4) ◽  
pp. 1-26
Author(s):  
Md Musabbir Adnan ◽  
Sagarvarma Sayyaparaju ◽  
Samuel D. Brown ◽  
Mst Shamim Ara Shawkat ◽  
Catherine D. Schuman ◽  
...  

Spiking neural networks (SNN) offer a power efficient, biologically plausible learning paradigm by encoding information into spikes. The discovery of the memristor has accelerated the progress of spiking neuromorphic systems, as the intrinsic plasticity of the device makes it an ideal candidate to mimic a biological synapse. Despite providing a nanoscale form factor, non-volatility, and low-power operation, memristors suffer from device-level non-idealities, which impact system-level performance. To address these issues, this article presents a memristive crossbar-based neuromorphic system using unsupervised learning with twin-memristor synapses, fully digital pulse width modulated spike-timing-dependent plasticity, and homeostasis neurons. The implemented single-layer SNN was applied to a pattern-recognition task of classifying handwritten-digits. The performance of the system was analyzed by varying design parameters such as number of training epochs, neurons, and capacitors. Furthermore, the impact of memristor device non-idealities, such as device-switching mismatch, aging, failure, and process variations, were investigated and the resilience of the proposed system was demonstrated.


Author(s):  
Kiona Hagen Niehaus ◽  
Rebecca Fiebrink

This paper describes the process of developing a software tool for digital artistic exploration of 3D human figures. Previously available software for modeling mesh-based 3D human figures restricts user output based on normative assumptions about the form that a body might take, particularly in terms of gender, race, and disability status, which are reinforced by ubiquitous use of range-limited sliders mapped to singular high-level design parameters. CreatorCustom, the software prototype created during this research, is designed to foreground an exploratory approach to modeling 3D human bodies, treating the digital body as a sculptural landscape rather than a presupposed form for rote technical representation. Building on prior research into serendipity in Human-Computer Interaction and 3D modeling systems for users at various levels of proficiency, among other areas, this research comprises two qualitative studies and investigation of the impact on the first author's artistic practice. Study 1 uses interviews and practice sessions to explore the practices of six queer artists working with the body and the language, materials, and actions they use in their practice; these then informed the design of the software tool. Study 2 investigates the usability, creativity support, and bodily implications of the software when used by thirteen artists in a workshop. These studies reveal the importance of exploration and unexpectedness in artistic practice, and a desire for experimental digital approaches to the human form.


Processes ◽  
2021 ◽  
Vol 9 (8) ◽  
pp. 1358
Author(s):  
Ewa Golisz ◽  
Adam Kupczyk ◽  
Maria Majkowska ◽  
Jędrzej Trajer

The objective of this paper was to create a mathematical model of vacuum drops in a form that enables the testing of the impact of design parameters of a milking cluster on the values of vacuum drops in the claw. Simulation tests of the milking cluster were conducted, with the use of a simplified model of vacuum drops in the form of a fourth-degree polynomial. Sensitivity analysis and a simulation of a model with a simplified structure of vacuum drops in the claw were carried out. As a result, the impact of the milking machine’s design parameters on the milking process could be analysed. The results showed that a change in the local loss and linear drag coefficient in the long milk duct will have a lower impact on vacuum drops if a smaller flux of inlet air, a higher head of the air/liquid mix, and a higher diameter of the long milk tube are used.


Agronomy ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 560
Author(s):  
Luigi Formisano ◽  
Michele Ciriello ◽  
Christophe El-Nakhel ◽  
Marios C. Kyriacou ◽  
Youssef Rouphael

In the Italian culinary tradition, young and tender leaves of Genovese basil (Ocimum basilicum L.) are used to prepare pesto sauce, a tasty condiment that attracts the interest of the food processing industry. Like other leafy or aromatic vegetables, basil is harvested more than once during the crop cycle to maximize yield. However, the mechanical stress induced by successive cuts can affect crucial parameters associated with pesto processing (leaf/stem ratio, stem diameter, and dry matter). Our research accordingly aimed to evaluate the impact of successive harvests on three field-grown Genovese basil cultivars (“Aroma 2”, “Eleonora” and “Italiano Classico”) in terms of production, physiological behavior, and technological parameters. Between the first and second harvest, marketable fresh yield and shoot dry biomass increased by 148.4% and 172.9%, respectively; by contrast, the leaf-to-stem ratio decreased by 22.5%, while the dry matter content was unchanged. The increased fresh yield and shoot dry biomass at the second harvest derived from improved photosynthetic efficiency, which enabled higher net CO2 assimilation, Fv/Fm and transpiration as well as reduced stomatal resistance. Our findings suggest that, under the Mediterranean environment, “Italiano Classico” carries superior productive performance and optimal technological characteristics in line with industrial requirements. These promising results warrant further investigation of the impact successive harvests may have on the qualitative components of high-yielding basil genotypes with respect to consumer expectations of the final product.


2021 ◽  
Vol 13 (9) ◽  
pp. 4606
Author(s):  
Faisal Masood ◽  
Perumal Nallagownden ◽  
Irraivan Elamvazuthi ◽  
Javed Akhter ◽  
Mohammad Azad Alam

A compound parabolic concentrator (CPC) is a non-imaging device generally used in PV, thermal, or PV/thermal hybrid systems for the concentration of solar radiation on the target surface. This paper presents the geometric design, statistical modeling, parametric analysis, and geometric optimization of a two-dimensional low concentration symmetric compound parabolic concentrator for potential use in building-integrated and rooftop photovoltaic applications. The CPC was initially designed for a concentration ratio of “2×” and an acceptance half-angle of 30°. A MATLAB code was developed in house to provoke the CPC reflector’s profile. The height, aperture width, and concentration ratios were computed for different acceptance half-angles and receiver widths. The interdependence of optical concentration ratio and acceptance half-angle was demonstrated for a wide span of acceptance half-angles. The impact of the truncation ratio on the geometric parameters was investigated to identify the optimum truncation position. The profile of truncated CPC for different truncation positions was compared with full CPC. A detailed statistical analysis was performed to analyze the synergistic effects of independent design parameters on the responses using the response surface modeling approach. A set of optimized design parameters was obtained by establishing specified optimization criteria. A 50% truncated CPC with an acceptance half-angle of 21.58° and receiver width of 193.98 mm resulted in optimum geometric dimensions.


Sign in / Sign up

Export Citation Format

Share Document