scholarly journals Физико-химический и механический состав почвы виноградников, обогащенной энергетическим биоматериалом

2019 ◽  
pp. 128-132
Author(s):  
Tatyana Vorobyova ◽  
Valeriy Petrov ◽  
Aleksey Belkov ◽  
Anton Prah ◽  
Vladimir Volynkin

Растительные отходы сельскохозяйственного производства в основном утилизируются в качестве кормов в животноводстве и реже используются в виде удобрения на многолетних насаждениях. Из растительных сельскохозяйственных отходов в качестве органического удобрения могут быть использованы вторичные отходы винодельческого производства, виноградные выжимки. Обоснование возможности применения такого вида биоудобрения в конкретных условиях с учетом показателей, характеризующих биоматериал и состав почвы, послужило целью выполненной работы. Биогенность деградируемой почвы ампелоценозов увеличивается легко гидролизируемыми виноградными выжимами, по своему биохимическому составу являющимися зональным экологическим индукторам физико-химического и механического состава почвы. Партии используемого биоматериала, вносимого в почву опытных участков в период проводимых исследований, по своим биохимическим показателям (азот, фосфор, калий, органическое вещество, рН) не имели существенных различий. Показатели содержания подвижных форм фосфора и калия в почве используют для оценки фосфатного и калийного режимов разных почв. При их недостаточности в почве рациональна замена агрохимикатов, относящимся к средствам химизации сельского хозяйства (фосфор-калийные удобрения), биоудобрением из отходов виноградовинодельческого производства, содержащим эти макроэлементы. Определено, что повышение биогенности и физико-химического состава почвы возможно обогащением ее отходами виноделия, содержащими питательные вещества для корнеобитаемого слоя почвы (азот 6,3%; фосфор 0,44%; калий 1,59%), органическое вещество до 82% и рН не вызывающий изменений кислотного баланса почвы. Установлено, что после одного цикла (весна-осень-весна 2017-2018 гг.) внесения биоудобрения в комплексе с эффективными микроорганизмами (препарат Байкал ЭМ-1) почва характеризовалась увеличением органического вещества на 0,3%, подвижных форм фосфора - на 11,0 мг/кг, общего азота - на 0,07%, макроэлементов кальция, натрия, магния, калия - от 2,0 до 7,0 мг/кг, уменьшением гранулометрического состава почвы (фракция < 0,01 мм) - на 0,7%, снижением концентрации тяжелых металлов (кобальт, мышьяк, медь, цинк - по ГОСТ) - от 0,1 до 6,0 мг/кг. Использование виноградных выжимок в комплексе с эффективными микроорганизмами в качестве энергетического биоматериала удовлетворяет современным требованиям эколого-экономической и эффективной утилизации растительных отходов сельского хозяйства в области виноградовинодельческого производства.Vegetation residue from agricultural production is mainly used as feed in livestock rearing, and is less frequently used as fertilizer on perennial plantings. From agricultural green waste, secondary waste from wine production and grape pomace can also be used as organic fertilizers. We conducted feasibility studies on the use of such bio-fertilizers under specific conditions, taking into account soil composition and biomaterial parameters. Biogenesity of the degrading soils of ampelocenoses can be improved by easily hydrolyzed grape marc, the biochemical composition of which serves as zonal ecological inducer of soil physico-chemical and mechanical composition. Batches of biomaterial introduced into soil of experimental plots during research had no significant differences in biochemical parameters (nitrogen, phosphorus, potassium, organic matter, pH). Active forms of phosphorus and potassium content in the soil is used to estimate the phosphate and potassium statuses of different soils. When their content in the soil is insufficient, it is recommended to replace the agrochemicals (phosphorus-potassium fertilizers) with bio-fertilizers from grape-growing production waste rich in those macronutrients. The study established that soil biogenisity and physico-chemical composition can be improved through its enrichment with winemaking waste containing nutrients for soil root layer (nitrogen 4.3 %; phosphorus 0.49%; potassium 1.49%), up to 82% of organic matter and the pH that does not alter the soil acid balance. It was found that one cycle (spring-autumn - spring 2017-2018) of bio-fertilizer introduction combined with effective microorganisms (Baikal EM-1 preparation), increased organic matter in the soil by 0.3 %, active phosphorus by 11.0 mg/kg, total nitrogen by 0.07%, calcium, sodium, magnesium, and potassium macronutrients from 2.0 up to 7.0 mg/kg, and decreased soil granulometric composition (fraction < 0.01 mm) by 0.7 %; it decreased heavy metal concentration (cobalt, arsenic, copper, zinc - under GOST) from 0.1 to 6.0 mg/kg. Combined application of grape pomace and effective micro-organisms as energy biomaterial meets modern requirements for environmentally sound, effective and efficient disposal of agricultural green waste material in the field of viticulture.

Author(s):  
Seda Bice Ataklı ◽  
Sezer Şahin ◽  
Sabriye Belgüzar

One of the most important factors that increase soil fertility is the amount of soil organic matter. One of the ways to increase soil organic matter is the addition of organic fertilizers. Yemsoy soybean cultivar was used in the study, and pot study was carried out in 3 replications according to the randomized blocks experimental design. In the study, three different fertilizer doses (EC 0- 0.5- 1), three different grape pomace compost (0- 20-40 %) were applied to the peat perlite mixture, and mycorrhiza and bacteria inoculation to these environments. At the end of a 60-day growing period, the plants were harvested from the top of the pot, and measurements were made. In the study, there was an increase in the above-ground fresh and dry weights, root fresh, and root dry weights of soybean plants grown with increasing fertilizer rates. The addition of compost to the growing medium, the addition of mycorrhiza, and bacteria caused different results in the investigated properties. The increase in compost and plant nutrition doses was effective in increasing plant growth.


Author(s):  
Md. Shiful Islam ◽  
Md. Harunor Rashid Khan ◽  
Fariha Farzana

In favor of assessing the influences of soil temperature elevation and moisture stress on physico-chemical properties of soil including soil reaction (pH), organic carbon (OC) content, availability of Nitrogen (N), Phosphorus (P), Potassium (K), Calcium (Ca) and Magnesium (Mg), field experiments were carried out over two seasons incorporated with organic materials of tricho-compost (TC), rice straw compost (RSC) and mustard meal (MM). Temperature elevation of 3°C from daily field temperature (23-25°C), and two different moisture levels - moist (70% moisture) and saturated (>100% moisture) - were considered simultaneously along with the application of TC at the dosages of 0, 2.5, 5; RSC at 0, 4, 8 and MM at 0, 3, 6 t ha-1. Elevated temperature markedly augmented OC (0.41 to 0.98%), N (1.07 to 4.98 m mol kg-1), P (0.39 to 0.86 m mol kg-1), K (0.12 to 0.34 c mol kg-1), Ca (2.13 to 5.97 c mol kg-1) and Mg (1.09 to 2.93 c mol kg-1) contents in soil during first season with RSC followed by MM and TC. The moist condition of soil, accompanied by the selected amendments had almost collateral effects on the aforesaid analyzed properties of soil in contrast to saturated condition. The carry-over effects of these treatments were most striking on selected properties in subsequent soil with TC succeeded by MM and RSC. Among the used amendments, TC exerted the most striking effect on nutrient availability because of the abundance of Trichoderma spp. even under stress conditions. The elevated temperature significantly (P ≤ .05) reduced the C/N ratios during both seasons which accelerated the organic matter decomposition and markedly influenced availability of N (45.39%), P (49.23%) and K (21.83%) revealed from regression analysis, irrespective of seasons. Moreover, the practice of tricho-compost over its sustainability – under climatic stress conditions - can therefore be good determinative over recovery of soil health via ameliorating soil organic matter and nutrient status.


2011 ◽  
Vol 83 (3) ◽  
pp. 801-816 ◽  
Author(s):  
Carlos M. A. Rangel ◽  
José A. Baptista Neto ◽  
Estefan M. Fonseca ◽  
John McAlister ◽  
Bernard J. Smith

In this study, the geochemical analysis of ten sediment samples collected along the fluvial system of the Estrela River, which flows into the northern portion of Guanabara Bay, shows the presence of anthropogenic impacts in this area. Concentrations of Fe, Mn, Zn, Cu, Pb, Cr and Ni obtained were slightly higher, when compared with values found innatural environments. The particle size and organic matter content in most of the analyzed stations showed featuresnot conducive to the accumulation of pollutants due to the low organic matter content and the strong presence ofsand fraction. There was also the fractionation of heavy metals in sediments and it was found the prominence ofresidual and reducible phase, besides the significant occurrence of organic fractions in some analyzed stations. Thesefactors, thus, highlight the potential risks of contamination, where the metals associated with the organic phase canbecome bioavailable in processes of dissolution, provided by physico-chemical changes that can occur in this aquaticenvironment.


2018 ◽  
Vol 4 ◽  
pp. 33-47 ◽  
Author(s):  
Inviolata Nanyuli ◽  
Stanley Omuterema ◽  
Francis N. Muyekho

Kakamega County is one of the most densely populated regions in Kenya and most people are dependent on agriculture for their livelihood. High population has led to continuous cultivation hence depletion of nutrients through the removal of crop residues, leaching and soil erosion. Inorganic fertilizers can restore soil fertility but are unaffordable for the majority of smallholder farmers living with 1240 KES (10.32 EUR) per month. However, despite government and NGOs interventions towards promoting the use of organic fertilizers in Kakamega County, the adoption rates are still low due to the long waiting period before the compost manure is ready. This study aimed at solving the problem of the period taken by the locally available organic matter to decompose and consequently the quality of the compost manure produced from various treatments. The objective of the study was to examine the effects of EM and Biochar on the rate of decomposition of locally available organic materials under Berkeley composting technique; and to evaluate the nutrient content of compost manure produced from the different treatments. Experimental design was used to examine the effects of EM and Biochar on the rate of decomposition under Berkeley composting technique and to evaluate the nutrient content of compost manure produced from different treatments. Four treatments; (i) Normal Berkeley (Control) (ii) EM+Berkeley (iii) Biochar+Berkeley, and (iv) EM+Biochar+Berkeley were evaluated in a completely randomized block design replicated three times. Nutrient content analysis used; Wet chemistry, LDPSA, PXRF and Mid-infrared (MIR) spectroscopy. Berkeley Hot/Rapid composting was the most adopted composting technique (28.65%), significance (χ2 = 66.500). Combining Biochar and EM (T4) significantly (P<0.05) accelerated the rate of decomposition of organic matter by attaining the highest temperature of 60°C on the 4th day, followed by compost heap with biochar alone (T3) and compost heaps with EM (T2) which attained the highest temperature of 58°C respectively on the 6th day compared to compost piles without biochar or EM at a temperature of 55°C on 8th day. The results suggest that Biochar and EM accelerate the composting process. pH, total N, K and CEC were not significantly affected by the composting treatments, while Total Carbon was significantly (p<0.05) highest in the Biochar+Berkeley treatment, followed by EM+Berkeley treatment and lowest in EM+Biochar+Berkeley treatment. Phosphorus and Total carbon were also higher in EM compost (1.8% and 5.4%) (p<0.05) compared to non-EM compost (1.2% and 5.0%).


2015 ◽  
Vol 4 (2) ◽  
pp. 206-220 ◽  
Author(s):  
Neha Khan ◽  
Dr Safiuddin ◽  
Rose Rizvi ◽  
Rizwan Ali Ansari ◽  
Irshad Mahmood ◽  
...  

Efficiency of an organic matter like Tagetes erecta and bioinoculants Azotobacter chroococcum and Glomus fasciculatum was investigated in tomato cultivar ‘Pusa Ruby’ when inoculated individually as well as concomitantly for the management of the root-knot nematode, Meloidogyne incognita in terms of growth parameters such as plant length, fresh and dry weights, chlorophyll content, per cent pollen fertility and mycorrhization. Greatest reduction in the numbers of second-stage juveniles in soil, number of root-galls, egg-masses and nematode multiplication was recorded with combined application of T. erecta and bio-inoculants A. chroococcum and G. fasciculatum as compared to untreated control and other treatments. Similarly, the greatest improvement in the plant growth and biomass of tomato was noted in the same treatments. However, individual inoculation of these bio-inoculants and organic fertilizers also showed significant enhancement but was less as compared to combined treatment. A. chroococcum was found most effective against disease incidence followed by G. fasciculatum and T. erecta. Parameters like NP and K contents were significantly enhanced in those plants which received combined treatments of organic matter and bio-inoculants. Azotobacter was found more efficacious against nematodes than Glomus fasciculatum. Organic matter also influenced the activity of bio-inoculants, more with the Azotobacter than G. fasciculatum. DOI: http://dx.doi.org/10.3126/ije.v4i2.12643 International Journal of Environment Vol.4(2) 2015: 206-220


1990 ◽  
Vol 22 (1-2) ◽  
pp. 251-259 ◽  
Author(s):  
R. Pujol

The sewage treatment plant of Metabief (East of France) has been monitored during three weeks in winter 1988. The treatment associates a physico-chemical treatment with a biological process of biofiltration. The first step eliminates about 60 % of the organic matter (COD and BOD). The biofliters improve the treatment removing 60 % of COD influent and 65 % of TSS. The process is efficient (N excepted) under conditions of the experiment but nitrification is limited by cold temperatures (&lt; 10°C). Important results related to biological sludge product are presented (sludge characteristic, microscopic data, sludge production). Power consumption of biofliters represents 70 % of the total plant needs. Adequate control of washing cycles and close survey of numerous movable devices are of the utmost importance to guarantee the proper operating of biofliters.


2021 ◽  
Vol 13 (3) ◽  
pp. 1109
Author(s):  
Edgar Ricardo Oviedo-Ocaña ◽  
Angélica María Hernández-Gómez ◽  
Marcos Ríos ◽  
Anauribeth Portela ◽  
Viviana Sánchez-Torres ◽  
...  

The composting of green waste (GW) proceeds slowly due to the presence of slowly degradable compounds in that substrate. The introduction of amendments and bulking materials can improve organic matter degradation and end-product quality. However, additional strategies such as two-stage composting, can deal with the slow degradation of green waste. This paper evaluates the effect of two-stage composting on the process and end-product quality of the co-composting of green waste and food waste amended with sawdust and phosphate rock. A pilot-scale study was developed using two treatments (in triplicate each), one being a two-stage composting and the other being a traditional composting. The two treatments used the same mixture (wet weight): 46% green waste, 19% unprocessed food waste, 18% processed food waste, 13% sawdust, and 4% phosphate rock. The traditional composting observed a higher degradation rate of organic matter during the mesophilic and thermophilic phases and observed thermophilic temperatures were maintained for longer periods during these two phases compared to two-stage composting (i.e., six days). Nonetheless, during the cooling and maturation phases, the two treatments had similar behaviors with regard to temperature, pH, and electrical conductivity, and the end-products resulting from both treatments did not statistically differ. Therefore, from this study, it is concluded that other additional complementary strategies must be evaluated to further improve GW composting.


Author(s):  
Xue Hu ◽  
Hongyi Liu ◽  
Chengyu Xu ◽  
Xiaomin Huang ◽  
Min Jiang ◽  
...  

Few studies have focused on the combined application of digestate and straw and its feasibility in rice production. Therefore, we conducted a two-year field experiment, including six treatments: without nutrients and straw (Control), digestate (D), digestate + fertilizer (DF), digestate + straw (DS), digestate + fertilizer + straw (DFS) and conventional fertilizer + straw (CS), to clarify the responses of rice growth and paddy soil nutrients to different straw and fertilizer combinations. Our results showed that digestate and straw combined application (i.e., treatment DFS) increased rice yield by 2.71 t ha−1 compared with the Control, and digestate combined with straw addition could distribute more nitrogen (N) to rice grains. Our results also showed that the straw decomposition rate at 0 cm depth under DS was 5% to 102% higher than that under CS. Activities of catalase, urease, sucrase and phosphatase at maturity under DS were all higher than that under both Control and CS. In addition, soil organic matter (SOM) and total nitrogen (TN) under DS and DFS were 20~26% and 11~12% higher than that under B and DF respectively, suggesting straw addition could benefit paddy soil quality. Moreover, coupling straw and digestate would contribute to decrease the N content in soil surface water. Overall, our results demonstrated that digestate and straw combined application could maintain rice production and have potential positive paddy environmental effects.


2014 ◽  
Vol 70 (12) ◽  
pp. 2040-2046 ◽  
Author(s):  
L. Chekli ◽  
S. Phuntsho ◽  
L. D. Tijing ◽  
J. L. Zhou ◽  
J.-H. Kim ◽  
...  

Manufactured nanoparticles (MNPs) are increasingly released into the environment and thus research on their fate and behaviour in complex environmental samples is urgently needed. The fate of MNPs in the aquatic environment will mainly depend on the physico-chemical characteristics of the medium. The presence and concentration of natural organic matter (NOM) will play a significant role on the stability of MNPs by either decreasing or exacerbating the aggregation phenomenon. In this study, we firstly investigated the effect of NOM concentration on the aggregation behaviour of manufactured Fe-oxide nanoparticles. Then, the stability of the coated nanoparticles was assessed under relevant environmental conditions. Flow field-flow fractionation, an emerging method which is gaining popularity in the field of nanotechnology, has been employed and results have been compared to another size-measurement technique to provide increased confidence in the outcomes. Results showed enhanced stability when the nanoparticles are coated with NOM, which was due to electrosteric stabilisation. However, the presence of divalent cations, even at low concentration (i.e. less than 1 mM) was found to induce aggregation of NOM-coated nanoparticles via bridging mechanisms between NOM and Ca2+.


2010 ◽  
Vol 2010 ◽  
pp. 1-6 ◽  
Author(s):  
Paloma Bescansa ◽  
Iñigo Virto ◽  
Oihane Fernández-Ugalde ◽  
María José Imaz ◽  
Alberto Enrique

The behaviour of earthworms, their role in organic matter incorporation into the soil, and the influence of aridity in such processes in arid and semiarid regions have scarcely been studied. In this study, physico-chemical analyses of the casts and the surrounding no-till agricultural soils of three experimental sites representing an aridity gradient in Navarre (NW Spain) were done. The casts were formed by the activity of the only anecic species,Scherotheca gigas(Dugès, 1828), ubiquitous in no-till soils in this region. We observed a significant depletion of clay and higher concentration of total organic C and labile C in the form of particulate organic matter (POM) in the casts as compared to the surrounding soil, suggesting selective ingestion of soil byS. gigas. This, together with the observation of increased concentration in POM with increasing aridity, suggests a major role of this species in the observed progressive gains of organic C stocks in no-till soils in the region.


Sign in / Sign up

Export Citation Format

Share Document