scholarly journals Conservation of Energy using Object Detection Model

Energy conservation has become a vital responsibility for every citizen. Considering classroom environment, electric appliances like fans and lights are usually unmonitored while students leave. It leads to the wastage of electricity. To save electricity, conventionally, sensors can be deployed to detect the presence / absence of person in the classroom and control electric appliances based on its trigger. Since (low-cost) sensors have reliability issues with shorter life span, it can't be used effectively. On the other hand, if costly (high precision and reliability) sensors were used to detect persons, deploying it in each and every classroom is not practicable due to very high initial investment. Here, this paper's approach is to use a medium quality, low cost night vision webcamera to detect persons inside classroom using YOLOv3 Object detection model built on top on TensorFlow framework. Computational capabilities for processing webcam footage is provided by PCs inside each and every classroom. (Assumption: Each and every classroom has a dedicated PC for sharing powerpoint slides) Switch board is configured with relays, which are connected in parallel to normal switches to allow manual intervention. Relays are controlled by Wi-Fi enabled microcontrollers like NodeMCU. Communication is made possible between NodeMCU and PC via LAN. By this means, a huge amount of electricity can be saved with least deployment cost.

Author(s):  
Mohammad Meraj ◽  
Atif Iqbal ◽  
Nasser MA Emadi ◽  
Prathap Reddy Bhimireddy ◽  
Chowdhary Muhammad Enamul Hoque

In response to expected shortages of ventilators caused by COVID-19 pandemic, globally many organizations and institutes have developed low cost and high rate production ventilators. Many of these ventilators are mechanical type and pneumatic type which are easy to produce but do not have all the necessary control parameters and their options as per the patient requirements. Furthermore, their failure rate is very high and computer interfacing and control is difficult. To address all the drawbacks of the available ventilator, power electronic motor drive based digitally controlled ventilator is designed, developed and tested in the Qatar University Laboratory. It consists of semiconductor switches based inverter driven by the microcontroller to run the BLDC (brushless direct current) motor. All the parameters such as pressure, rate of flow and volume required is successfully tuned and trained to the microcontroller. As per the patient requirement, it can deliver the required amount of the oxygen into the patient’s body and similarly removes the exhaling air from inside. As all the control process is happening by the microcontroller, all the safety, sound and valves can be easily integrated to reduce the risk for the patient. Minimal number of access control buttons are provided to use the developed ventilator so that it can be easily used by all kinds of hospital nurses.


Author(s):  
Y. L. Chen ◽  
S. Fujlshiro

Metastable beta titanium alloys have been known to have numerous advantages such as cold formability, high strength, good fracture resistance, deep hardenability, and cost effectiveness. Very high strength is obtainable by precipitation of the hexagonal alpha phase in a bcc beta matrix in these alloys. Precipitation hardening in the metastable beta alloys may also result from the formation of transition phases such as omega phase. Ti-15-3 (Ti-15V- 3Cr-3Al-3Sn) has been developed recently by TIMET and USAF for low cost sheet metal applications. The purpose of the present study was to examine the aging characteristics in this alloy.The composition of the as-received material is: 14.7 V, 3.14 Cr, 3.05 Al, 2.26 Sn, and 0.145 Fe. The beta transus temperature as determined by optical metallographic method was about 770°C. Specimen coupons were prepared from a mill-annealed 1.2 mm thick sheet, and solution treated at 827°C for 2 hr in argon, then water quenched. Aging was also done in argon at temperatures ranging from 316 to 616°C for various times.


Author(s):  
José Luis Viramontes-Reyna ◽  
Josafat Moreno-Silva ◽  
José Guadalupe Montelongo-Sierra ◽  
Erasmo Velazquez-Leyva

This document presents the results obtained from the application of the law of Lens to correctly identify the polarity of the windings in a three-phase motor with 6 exposed terminals, when the corresponding labeling is not in any situation; Prior to identifying the polarity, it should be considered to have the pairs of the three windings located. For the polarity, it is proposed to feed with a voltage of 12 Vrms to one of the windings, which are identified randomly as W1 and W2, where W1 is connected to the voltage phase of 12 Vrms of the signal and W2 to the voltage reference to 0V; by means of voltage induction and considering the law of Lens, the remaining 4 terminals can be identified and labeled as V1, V2, U1 and U2. For this process a microcontroller and control elements with low cost are used.


2020 ◽  
Vol 3 (2) ◽  
pp. 68-81
Author(s):  
Abu Sadath ◽  
Farhana Afroz ◽  
Hosne Ara ◽  
Abdulla-Al Kafy

Rivers are the lifeline of Bangladesh economy and serve as the source of water supply, fisheries, irrigation for agriculture, low-cost transport, generate electricity and conserve biodiversity. The Ichamati River situated in Pabna, Bangladesh is also a blessing for the city. However, recently, due to the irregular and unplanned activities adjacent to the riverside, the life, flow and water quality of the river is in a vulnerable condition. This study aims to identify the present status of the Ichamati River and provide an effective design approach and policy measures in restoring the river flow and control water pollution. The data was collected from the questioner surveys, key informant interviews and focus group discussions. Results suggest that several factors such as the construction of an illegal settlement, unplanned waste dumping, disposal of fiscal sludge through sewerage connection, lack of awareness among people regarding the importance of river biodiversity and absence of riverfront development and conservation plan are responsible for water pollution, inconsistent water flow and damaging the life cycle of Ichamati river. The design approach and policy measures were developed based on the perceptions of local community people, experts and government officials. The suggested policy measures will help to restore the flow of the river and reduce the water pollution, and the design approach will ensure the economic benefit of the riverfront development in future.


Author(s):  
Femi Robert

Background: Switches are important component in electrical system. The switches needs to have the advantages of low ON-state resistance, very high OFF-state resistance, high isolation, no leakage current, less power loss, fast switching, high linearity, small size, arcless and low cost in bulk production. Also these switches have to be reliable and environmental friendly. Methods: In this paper, macro and microswitches for power applications are extensively reviewed and summarized. Various types of switches such as mechanical, solid-state, hybrid and micromechanical switches have been used for power applications are reviewed. The importance and challenge in achieving arcless switching is presented. Results: The use of micromechanical switches for power applications, actuation techniques, switching modes, reliability and lifetime are also reviewed. The modeling and design challenges are also reviewed. Conclusion: The applications of micromechanical switches shows that the switches can reduce the leakage current in battery operated systems and reduce the size of the system considerably.


2021 ◽  
pp. 096100062110165
Author(s):  
Mohammadhiwa Abdekhoda ◽  
Fatemeh Ranjbaran ◽  
Asghar Sattari

This study was conducted with the aim of evaluating the role of information and information resources in the awareness, control, and prevention of COVID-19. This study was a descriptive-analytical survey in which 450 participants were selected for the study. The data collection instrument was a researcher-made questionnaire. Descriptive and inferential statistics were used to analyze the data through SPSS. The findings show that a wide range of mass media has become well known as information resources for COVID-19. Other findings indicate a significant statistical difference in the rate of using information resources during COVID-19 based on age and gender; however, this difference is not significant regarding the reliability of information resources with regard to age and gender. Health information has an undisputable role in the prevention and control of pandemic diseases such as COVID-19. Providing accurate, reliable, and evidence-based information in a timely manner for the use of resources and information channels related to COVID-19 can be a fast and low-cost strategic approach in confronting this disease.


Processes ◽  
2021 ◽  
Vol 9 (6) ◽  
pp. 915
Author(s):  
Gözde Dursun ◽  
Muhammad Umer ◽  
Bernd Markert ◽  
Marcus Stoffel

(1) Background: Bioreactors mimic the natural environment of cells and tissues by providing a controlled micro-environment. However, their design is often expensive and complex. Herein, we have introduced the development of a low-cost compression bioreactor which enables the application of different mechanical stimulation regimes to in vitro tissue models and provides the information of applied stress and strain in real-time. (2) Methods: The compression bioreactor is designed using a mini-computer called Raspberry Pi, which is programmed to apply compressive deformation at various strains and frequencies, as well as to measure the force applied to the tissue constructs. Besides this, we have developed a mobile application connected to the bioreactor software to monitor, command, and control experiments via mobile devices. (3) Results: Cell viability results indicate that the newly designed compression bioreactor supports cell cultivation in a sterile environment without any contamination. The developed bioreactor software plots the experimental data of dynamic mechanical loading in a long-term manner, as well as stores them for further data processing. Following in vitro uniaxial compression conditioning of 3D in vitro cartilage models, chondrocyte cell migration was altered positively compared to static cultures. (4) Conclusion: The developed compression bioreactor can support the in vitro tissue model cultivation and monitor the experimental information with a low-cost controlling system and via mobile application. The highly customizable mold inside the cultivation chamber is a significant approach to solve the limited customization capability of the traditional bioreactors. Most importantly, the compression bioreactor prevents operator- and system-dependent variability between experiments by enabling a dynamic culture in a large volume for multiple numbers of in vitro tissue constructs.


Electronics ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 517
Author(s):  
Seong-heum Kim ◽  
Youngbae Hwang

Owing to recent advancements in deep learning methods and relevant databases, it is becoming increasingly easier to recognize 3D objects using only RGB images from single viewpoints. This study investigates the major breakthroughs and current progress in deep learning-based monocular 3D object detection. For relatively low-cost data acquisition systems without depth sensors or cameras at multiple viewpoints, we first consider existing databases with 2D RGB photos and their relevant attributes. Based on this simple sensor modality for practical applications, deep learning-based monocular 3D object detection methods that overcome significant research challenges are categorized and summarized. We present the key concepts and detailed descriptions of representative single-stage and multiple-stage detection solutions. In addition, we discuss the effectiveness of the detection models on their baseline benchmarks. Finally, we explore several directions for future research on monocular 3D object detection.


Sensors ◽  
2021 ◽  
Vol 21 (10) ◽  
pp. 3515
Author(s):  
Sung-Ho Sim ◽  
Yoon-Su Jeong

As the development of IoT technologies has progressed rapidly recently, most IoT data are focused on monitoring and control to process IoT data, but the cost of collecting and linking various IoT data increases, requiring the ability to proactively integrate and analyze collected IoT data so that cloud servers (data centers) can process smartly. In this paper, we propose a blockchain-based IoT big data integrity verification technique to ensure the safety of the Third Party Auditor (TPA), which has a role in auditing the integrity of AIoT data. The proposed technique aims to minimize IoT information loss by multiple blockchain groupings of information and signature keys from IoT devices. The proposed technique allows IoT information to be effectively guaranteed the integrity of AIoT data by linking hash values designated as arbitrary, constant-size blocks with previous blocks in hierarchical chains. The proposed technique performs synchronization using location information between the central server and IoT devices to manage the cost of the integrity of IoT information at low cost. In order to easily control a large number of locations of IoT devices, we perform cross-distributed and blockchain linkage processing under constant rules to improve the load and throughput generated by IoT devices.


Sign in / Sign up

Export Citation Format

Share Document