scholarly journals In Vitro and In Ovo Assessment of Betulinic Acid Antimelanoma Effect

2020 ◽  
Vol 2020 (1) ◽  
pp. 1
Author(s):  
Dorina Coricovac ◽  
Iulia Pînzaru ◽  
Ștefana Avram ◽  
Ioana Macașoi ◽  
Codruța Șoica ◽  
...  

Although it recorded a breakthrough for the treatment of metastatic melanoma in the last decade, this disease remains a challenge in terms of finding an efficient treatment, reducing secondary resistance to treatment, and understanding the complexity of the molecular mechanisms involved in its development, progression and metastasis. This study aims to verify the multitarget effect of a natural compound, betulinic acid (BA), a pentacyclic triterpene, as antimelanoma agent by applying two experimental models: a human melanoma cell line—A375 and the chick chorioallantoic membrane model. The methods applied in this study were: MTT cell viability assay for cytotoxicity assessment and the chorioallantoic membrane assay (CAM) for antiangiogenic evaluation. The results indicated a significant decrease of A375 cells viability after a 72 h BA treatment even at the lowest concentration tested—1 µM (61.95% viable cells), with a calculated IC50 of 9.437 µM. In addition, BA inhibited not only the in ovo A375-induced tumor growth but also the angiogenesis on the primary site at 72 h post application. These data highlight the potential antimelanoma effect of BA by targeting the tumor cells via multiples pathways as inducing cell death and suppressing the angiogenic process, a must have for tumor development.

Author(s):  
Muhammad Asif ◽  
Hafiz Muhammad Yousaf ◽  
Mohammed Saleem ◽  
Liaqat Hussain ◽  
Mahrukh ◽  
...  

Background: Raphanus sativus is traditionally used as an anti-inflammatory agent. Objectives: The current study was designed to explore the in vivo anti-inflammatory and antiangiogenic properties of Raphanus sativus seeds oil. Methods: Cold press method was used for the extraction of oil (RsSO) and was characterised using GC-MS techniques. Three in vitro antioxidant assays (DPPH, ABTS, and FRAP) were performed to explore antioxidant potential of RsSO. Disc diffusion methods were used to study in vitro antimicrobial properties. In vivo anti-inflammatory properties were studied in both acute and chronic inflammation models. In ovo chicken, a chorioallantoic membrane assay was performed to study antiangiogenic effects. Molecular mechanisms were identified using serum TNF-α ELISA kit and docking tools. Results: GC-MS analysis of RsSO revealed the presence of hexadecanoic and octadecanoic acid. Findings of DPPH, ABTS, and FRAP models indicated relatively moderate radical scavenging properties of RsSO. Oil showed antimicrobial activity against a variety of strains tested. Data of inflammation models showed significant (p < 0.05) anti-inflammatory effects of RsSO in both acute and chronic models. 500 mg/kg RsSO halted inflammation development significantly better (p < 0.05) as compared with lower doses. Histopathological evaluations of paws showed minimal infiltration of inflammatory cells in RsSO-treated animals. Findings of TNF-α ELSIA and docking studies showed that RsSO has the potential to downregulate the expression of TNF-α, iNOS, ROS, and NF-κB, respectively. Moreover, RsSO showed in vivo antiangiogenic effects. Conclusion: Data of the current study highlight that Raphanus sativus seeds oil has anti-inflammatory, and antiangiogenic properties and can be used as an adjunct to standard NSAIDs therapy to reduce its dose and side effects.


Cancers ◽  
2021 ◽  
Vol 13 (15) ◽  
pp. 3651
Author(s):  
Alexandru Blidisel ◽  
Iasmina Marcovici ◽  
Dorina Coricovac ◽  
Florin Hut ◽  
Cristina Adriana Dehelean ◽  
...  

Hepatocellular carcinoma (HCC), the most frequent form of primary liver carcinoma, is a heterogenous and complex tumor type with increased incidence, poor prognosis, and high mortality. The actual therapeutic arsenal is narrow and poorly effective, rendering this disease a global health concern. Although considerable progress has been made in terms of understanding the pathogenesis, molecular mechanisms, genetics, and therapeutical approaches, several facets of human HCC remain undiscovered. A valuable and prompt approach to acquire further knowledge about the unrevealed aspects of HCC and novel therapeutic candidates is represented by the application of experimental models. Experimental models (in vivo and in vitro 2D and 3D models) are considered reliable tools to gather data for clinical usability. This review offers an overview of the currently available preclinical models frequently applied for the study of hepatocellular carcinoma in terms of initiation, development, and progression, as well as for the discovery of efficient treatments, highlighting the advantages and the limitations of each model. Furthermore, we also focus on the role played by computational studies (in silico models and artificial intelligence-based prediction models) as promising novel tools in liver cancer research.


2020 ◽  
Vol 21 (15) ◽  
pp. 5499
Author(s):  
Hannah L. Smith ◽  
Stephen A. Beers ◽  
Juliet C. Gray ◽  
Janos M. Kanczler

Treatment for osteosarcoma (OS) has been largely unchanged for several decades, with typical therapies being a mixture of chemotherapy and surgery. Although therapeutic targets and products against cancer are being continually developed, only a limited number have proved therapeutically active in OS. Thus, the understanding of the OS microenvironment and its interactions are becoming more important in developing new therapies. Three-dimensional (3D) models are important tools in increasing our understanding of complex mechanisms and interactions, such as in OS. In this review, in vivo animal models, in vitro 3D models and in ovo chorioallantoic membrane (CAM) models, are evaluated and discussed as to their contribution in understanding the progressive nature of OS, and cancer research. We aim to provide insight and prospective future directions into the potential translation of 3D models in OS.


Author(s):  
Marco Raffaele ◽  
Khaled Greish ◽  
Luca Vanella ◽  
Giuseppe Carota ◽  
Fatemah Bahman ◽  
...  

Background: Pomegranate is a fruit rich in bioactive compounds such as punicalagins, gallic acid, and ellagic acid derivatives. It has been widely used since ancient times in traditional medicine for a wide variety of diseases. It has been reported that bioactive compounds, such as polyphenols, are able to induce the expression of cytoprotective enzymes, including HO-1. The contribution of HO-1 activity to the prevention of intestinal inflammation has been shown in different models of Inflammatory bowel diseases (IBD). Objective: Aim of the present research was to investigate the molecular mechanisms involved in the beneficial effects of a pomegranate extract (PE), rich in bioactive compounds in intestinal inflammation. Methods: Caco-2 cells exposed to LPS and DSS induced colitis were chosen as convenient experimental models of intestinal inflammation. Results: Results obtained in our experimental conditions, showed that PE in vitro was able to induce HO-1 and to reduce cellular damage and oxidative stress through increase of GSH levels. Moreover, PE was able to decrease the pro-inflammatory marker IL-8 levels and to activate TIGAR pathway. The results obtained in vivo, in agreement with the data obtained in vitro, highlighted the ability of PE to reduce intestinal inflammation, preserve the colon length and histological features and reduce IL-6 levels compared to the DSS treated group. Conclusion: PE, rich in bioactive compounds, could contribute, as supportive therapy, to enhance the effects of the conventional therapeutic strategies to the management of IBD.


Development ◽  
1987 ◽  
Vol 101 (4) ◽  
pp. 673-684
Author(s):  
P.A. Merrifield ◽  
I.R. Konigsberg

Myosin alkali light chain accumulation in developing quail limb musculature has been analysed on immunoblots using a monoclonal antibody which recognizes an epitope common to fast myosin light chain 1 (MLC1f) and fast myosin light chain 3 (MLC3f). The limb muscle of early embryos (i.e. up to day 10 in ovo) has a MLC profile similar to that observed in myotubes cultured in vitro; although MLC1f is abundant, MLC3f cannot be detected. MLC3f is first detected in 11-day embryos. To determine whether this alteration in MLC3f accumulation is nerve or hormone dependent, limb buds with and without neural tube were cultured as grafts on the chorioallantoic membrane of chick hosts. Although differentiated muscle develops in both aneural and innervated grafts, innervated grafts contain approximately three times as much myosin as aneural grafts. More significantly, although aneural grafts reproducibly accumulate normal levels of MLC1f, they fail to accumulate detectable levels of MLC3f. In contrast, innervated grafts accumulate both MLC1f and MLC3f, suggesting that the presence of neural tube in the graft promotes the maturation, as well as the growth, of muscle tissue. This is the first positive demonstration that innervation is necessary for the accumulation of MLC3f that occurs during normal limb development in vivo.


2020 ◽  
Vol 48 (01) ◽  
pp. 161-182 ◽  
Author(s):  
Jihan Huang ◽  
Wei Guo ◽  
Fan Cheung ◽  
Hor-Yue Tan ◽  
Ning Wang ◽  
...  

Unlike Western medicines with single-target, the traditional Chinese medicines (TCM) always exhibit diverse curative effects against multiple diseases through its “multi-components” and “multi-targets” manifestations. However, discovery and identification of the major therapeutic diseases and the underlying molecular mechanisms of TCM remain to be challenged. In the current study, we, for the first time, applied an integrated strategy by combining network pharmacology with experimental evaluation, for exploration and demonstration of the therapeutic potentials and the underlying possible mechanisms of a classic TCM formula, Huanglian Jiedu decoction (HLJDD). First, the herb–compound, compound–protein, protein–pathway, and gene–disease networks were constructed to predict the major therapeutic diseases of HLJDD and explore the underlying molecular mechanisms. Network pharmacology analysis showed the top one predicted disease of HLJDD treatment was cancer, especially hepatocellular carcinoma (HCC) and inflammation-related genes played an important role in the treatment of HLJDD on cancer. Next, based on the prediction by network pharmacology analysis, both in vitro HCC cell and in vivo orthotopic HCC implantation mouse models were established to validate the curative role of HLJDD. HLJDD exerted its antitumor activity on HCC in vitro, as demonstrated by impaired cell proliferation and colony formation abilities, induced apoptosis and cell cycle arrest, as well as inhibited migratory and invasive properties of HCC cells. The orthotopic HCC implantation mouse model further demonstrated the remarkable antitumour effects of HLJDD on HCC in vivo. In conclusion, our study demonstrated the effectiveness of integrating network pharmacology with experimental study for discovery and identification of the major therapeutic diseases and the underlying molecular mechanisms of TCM.


2012 ◽  
Vol 56 (2) ◽  
pp. 261-266 ◽  
Author(s):  
Maciej Szmidt ◽  
Kaja Urbańska ◽  
Marta Grodzik ◽  
Piotr Orłowski ◽  
Ewa Sawosz ◽  
...  

Abstract The aim of this study was the morphological characterisation of glioblastoma multiforme tumour grown in ovo. Tumour cells (U-87 MG) were implanted on the chorioallantoic membrane of chicken egg. The structural features of cultured tumours resembled the spontaneous glioblastoma multiforme; however, the differences were also indicated. Our results confirm applicability of in ovo culture in tumour genesis studies. The described novel model may be profoundly helpful for the future research on molecular mechanisms of tumour growth inhibition.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 1105-1105
Author(s):  
Elias Jabbour ◽  
Hagop M. Kantarjian ◽  
Dan Jones ◽  
Elizabeth Burton ◽  
Jorge Cortes

Abstract Background. Point mutations of the BCR-ABL KD are the most frequently identified mechanism of resistance in pts with CML and Philadelphia-positive acute lymphoblastic leukemia (Ph+ ALL) who fail TKI. Experimental models of in vitro drug sensitivity have shown that specific mutations may develop after incubation with second generation TKIs, albeit at a decreased frequency compared with imatinib. Some of the mutations are novel and not previously described after imatinib failure; in some instances they did not confer resistance to imatinib. One of them, V299L was rarely encountered after imatinib therapy but was reported to emerge after dasatinib exposure in induced mutagenesis models causing resistance to dasatinib by impairing its binding. Aims. We assessed the incidence and pattern of development of V299L in pts with TKI-resistant CML and Ph+ ALL at our institution, and the response following change of therapy. Results. V299L mutation was detected in 14 pts (12 CML, 2 Ph+ ALL): 1 occurred among 186 pts assessed for mutations (0.05%) after imatinib failure (1% of all mutation detected), 9 among 47 pts (19%) who developed mutations on dasatinib therapy, and 4 among 18 pts (22%) who developed mutations on bosutinib therapy (p&lt;0.001); none of the 49 pts who developed mutations on nilotinib therapy acquired V299L. Median age was 55 years (range, 26–82 years). Seven pts were previously treated with interferon-alpha. One pt developed V299L after receiving imatinib for 26 months (mos). Nine pts developed V299L after being on dasatinib for a median of 14 mos (range, 1–30 mos); 7 received dasatinib after imatinib failure, 1 after imatinib and nilotinib failure; and 1 after failure of imatinib, INNO-406, and bosutinib. In 4 pts V299L appeared after receiving bosutinib as 3rd TKI after imatinib and dasatinib failure, for a median of 5 mos (range, 2–8 mos). None of the 11 evaluable pts treated with 2nd generation TKIs had V299L at start of therapy. The best response to TKI immediately preceding V299L (1 imatinib, 9 dasatinib, 4 bosutinib) was complete hematologic response only in 5 (36%, 4 dasatinib, 1 bosutinib), minor cytogenetic response in 2 (14%; 1 imatinib, 1 dasatinib), complete cytogenetic response in 4 (29%; 3 dasatinib, 1 bosutinib); no response in 3 pts (1 dasatinib, 2 bosutinib). The median duration of response was 14 mos. V299L was associated with primary resistance in 3 pts, and secondary resistance in 9. Two pts on dasatinib therapy remained in CHR and minor cytogenetic response, respectively, 3 months after the mutation detection. At the time the mutation was detected, 4 pts were in chronic (CP), 7 in accelerated (AP), 1 in blast phase (BP), and 2 with Ph+ ALL. 3 pts (1 CP, 1 AP, 1 BP) received nilotinib after V299L detection and 1 responded (major molecular response sustained for 16+ mos). One pt received INNO406 and did not respond. One pt with Ph+ ALL was refractory to allogeneic stem cell transplantation and acquired a T315I mutation. Two pts received homoharringtonine, did not respond, but had an eradication of the mutant clone. After a median follow-up of 8 mos (range, 3–29 mos), from the time V299L was detected, 4 died (1 CP, 1 BP, 2 ALL). The estimated 2-year survival from mutation detection was 74%. Conclusion. V299L occurs more frequently after dual Src/Bcr-Abl kinase inhibitors therapy, paralleling the findings of in vitro studies. TKIs showing in vitro activity against this mutation (e.g. nilotinib) may be good treatment options for pts with this mutation.


1953 ◽  
Vol 98 (3) ◽  
pp. 219-227 ◽  
Author(s):  
Igor Tamm ◽  
Karl Folkers ◽  
Frank L. Horsfall

At a concentration of 0.0026 M, 2,5-dimethylbenzimidazole caused a number of alterations in the first cycle of multiplication of influenza B virus, Lee strain, in chorioallantoic membrane cultures in vitro. As determined by infectivity titrations in ovo on the membrane per se, the following alterations were observed: The duration of the latent period was increased by 80 per cent. The rate of increase in titer during the incremental period was somewhat decreased. The yield of virus was decreased by about 99 per cent. When the compound was added to membrane cultures at various periods before or after inoculation with the virus, the following findings were obtained: On addition before or along with the virus, the substance caused about 99 per cent inhibition of multiplication. When added during the first 2 hours after inoculation, the compound caused inhibition of a degree which was inversely proportional to the time of addition. When added 3 to 8 hours after inoculation, the substance caused about 80 per cent inhibition. When added after the end of the latent period, no definite inhibition was obtained in the first cycle of multiplication. These results are interpreted as indicating that 2,5-dimethylbenzimidazole acts by reducing the rate of biosynthetic mechanisms necessary for the reproduction of influenza virus particles.


2013 ◽  
Vol 2013 ◽  
pp. 1-22 ◽  
Author(s):  
Abderrahim Nemmar ◽  
Jørn A. Holme ◽  
Irma Rosas ◽  
Per E. Schwarze ◽  
Ernesto Alfaro-Moreno

Epidemiological and clinical studies have linked exposure to particulate matter (PM) to adverse health effects, which may be registered as increased mortality and morbidity from various cardiopulmonary diseases. Despite the evidence relating PM to health effects, the physiological, cellular, and molecular mechanisms causing such effects are still not fully characterized. Two main approaches are used to elucidate the mechanisms of toxicity. One is the use ofin vivoexperimental models, where various effects of PM on respiratory, cardiovascular, and nervous systems can be evaluated. To more closely examine the molecular and cellular mechanisms behind the different physiological effects, the use of variousin vitromodels has proven to be valuable. In the present review, we discuss the current advances on the toxicology of particulate matter and nanoparticles based on these techniques.


Sign in / Sign up

Export Citation Format

Share Document