STUDY OF CXCL12, CCR4, EGFR GENE EXPRESSION IN MIGRATING MYELOMONOBLASTIC LEUKEMIA CELLS BEFORE AND AFTER CHEMOTHERAPY

2019 ◽  
Vol 1 (1) ◽  
pp. 100-104
Author(s):  
A. B. Filina ◽  
O. A. Svitich ◽  
Yu. I. Ammur ◽  
A. K. Golenkov ◽  
E. F. Klinushkina ◽  
...  

Аim. A study of CXCL12 effect on the migration of mononuclear cells isolated from healthy patients, from patients with myelomonoblastic leukemia before and after chemotherapy and the study of CCR4, EGFR and CXCL12 genes expression after exposure to CXCL12. Materials and methods. The chemotaxis of mononuclear cells (MNCs) of healthy donors and patients with myelomonoblastic leukemia was studied in a Boyden chamber, followed by isolation of RNA, reverse transcription and PCR-RV. Results. A significant increase in myelomonoblasic cell chemotaxis towards CXCL12 after chemotherapy was demonstrated, as well as a decrease in the expression of this chemokine in tumor cells before chemotherapy after exposure to CXCL12. Сonclusion. Presumably, the tumor cells themselves produce CXCL12 in large amounts, which is necessary for the disturbance of intercellular interactions and further intravasation, whose production may decrease with external stimulation by the same chemokine. CXCL12 also helps to increase the expression level of EGFR and CCR4, which leads to increased tumor proliferation and migration of tumor cells.

2008 ◽  
Vol 105 (40) ◽  
pp. 15505-15510 ◽  
Author(s):  
Yoshihiro Miyahara ◽  
Kunle Odunsi ◽  
Wenhao Chen ◽  
Guangyong Peng ◽  
Junko Matsuzaki ◽  
...  

Despite the important role of Th17 cells in the pathogenesis of many autoimmune diseases, their prevalence and the mechanisms by which they are generated and regulated in cancer remain unclear. Here, we report the presence of a high percentage of CD4+ Th17 cells at sites of ovarian cancer, compared with a low percentage of Th17 cells in peripheral blood mononuclear cells from healthy donors and cancer patients. Analysis of cytokine production profiles revealed that ovarian tumor cells, tumor-derived fibroblasts, and antigen-presenting cells (APCs) secreted several key cytokines including IL-1β, IL-6, TNF-α and TGF-β, which formed a cytokine milieu that regulated and expanded human IL-17-producing T-helper (Th17) cells. We further show that IL-1β was critically required for the differentiation and expansion of human Th17 cells, whereas IL-6 and IL-23 may also play a role in the expansion of memory Th17 cells, even though IL-23 levels are low or undetectable in ovarian cancer. Further experiments demonstrated that coculture of naïve or memory CD4+ T cells with tumor cells, APCs, or both could generate high percentages of Th17 cells. Treatment with anti-IL-1 alone or a combination of anti-IL-1 and anti-IL-6 reduced the ability of tumor cells to expand memory Th17 cells. Thus, we have identified a set of key cytokines secreted by ovarian tumor cells and tumor-associated APCs that favor the generation and expansion of human Th17 cells. These findings should accelerate efforts to define the function of this important subset of CD4+ T cells in the human immune response to cancer.


1994 ◽  
Vol 12 (5) ◽  
pp. 1021-1027 ◽  
Author(s):  
R S Negrin ◽  
J Pesando

PURPOSE To compare bone marrow (BM) before and after purging with monoclonal antibodies (MAbs) and complement with peripheral-blood mononuclear cells (PBMNCs) for tumor-cell contamination by amplification of t(14;18) sequences using the polymerase chain reaction (PCR). PATIENTS AND METHODS Sixty patients with non-Hodgkin's lymphoma (NHL) undergoing autologous BM transplantation were evaluated. Six BM biopsies were performed at the time of harvesting and evaluated morphologically for tumor involvement. The harvested BM was treated with a panel of anti-B-cell MAbs directed against CD9, CD10, CD19, and CD20, followed by rabbit complement. Clonogenic assays were performed before and after purging. DNA was extracted and t(14;18) sequences amplified by PCR. PBMNCs collected by apheresis for back-up purposes were similarly evaluated. RESULTS Fifteen patients (25%) were PCR-positive before BM purging. Following MAb- and complement-mediated purging, there was a reduction in the PCR-amplified signal in 10 patients (67%). There was no reduction in colony-forming unit granulocyte-macrophage (CFU-GM) colony growth following purging. Eight of these 15 patients (53%) had morphologic evidence of BM involvement at the time of harvesting. In these eight patients, only three had a reduction in the PCR-amplified products, as compared with all seven who were morphologically negative at the time of BM harvesting (P = .026). Fourteen of these 15 patients had PBMNCs collected near the time of BM harvesting and 12 (86%) were PCR-positive. CONCLUSION BM purging with MAbs and complement results in reduction in the number of t(14;18)-positive tumor cells, especially in those patients who have no morphologic evidence of BM disease at the time of harvesting. Purged BM was less contaminated with t(14;18)-positive cells than unpurged PBMNCs, which were frequently contaminated with tumor cells.


Blood ◽  
1983 ◽  
Vol 61 (4) ◽  
pp. 790-798 ◽  
Author(s):  
K Oshimi ◽  
Y Oshimi ◽  
T Motoji ◽  
S Kobayashi ◽  
H Mizoguchi

Abstract Studies were undertaken to determine whether leukemia and lymphoma cells would be lysed by autologous and allogeneic interferon (IFN) activated peripheral blood mononuclear cells (PBMC). PBMC from healthy donors and from patients were cultured with and without 500 U of highly purified human fibroblast IFN/ml for 24 hr, and then their cytotoxic activity was assayed by a 5-hr 51Cr-release test. Of primary tumor cells isolated from patients, the cells of 5 of 15 patients with acute nonlymphocytic leukemia (ANLL), 5 of 9 patients with acute lymphocytic leukemia (ALL), 2 of 3 patients with chronic phase chronic myelogenous leukemia (CML), 2 of 3 patients with blastic phase CML, 1 patient with hairy cell leukemia, and 6 patients with diffuse non-Hodgkin's lymphoma were sensitive to IFN-activated PBMC of healthy donors, whereas the cells of 3 of the ANLL patients, 2 of the ALL patients, and 3 of the lymphoma patients were sensitive to unstimulated PBMC. Of the ANLL cells tested, myeloblasts, promyelocytes, and monoblasts were sensitive to either unstimulated or IFN-activated PBMC. Compared with the ANLL cells, the lymphoma cells were statistically significantly sensitive to activated effector cells (p less than 0.025). On the basis of the unlabeled target competition test and the recovery of cytotoxic cells within the fractions enriched in natural killer (NK) cells, NK cells appeared to mediate the above unstimulated and IFN-boosted cytotoxicity. In experiments using autologous effector-target cells from 11 patients, the addition of 500 U of IFN/ml enhanced the lytic activity of PBMC against autologous lymphoma cells in 1 patient, and higher concentrations of IFN, i.e., 2500 or 3500 U/ml, enhanced their cytotoxic activity against autologous leukemia or lymphoma cells in 4 of 8 patients. These data indicate that IFN-activated allogeneic PBMC are able to lyse both myeloid and lymphoid tumor cells, whereas higher concentrations of IFN are required to enhance lytic activity against autologous tumor cells.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 419-419
Author(s):  
Yan Song ◽  
Deepika Sharma Das ◽  
Arghya Ray ◽  
Durgadevi Ravillah ◽  
Nikhil C. Munshi ◽  
...  

Abstract Background and Rationale Deregulation of the ubiquitin-proteasome system (UPS) is linked to pathogenesis of various human diseases, including cancer. Targeting the proteasome is an effective therapy in multiple myeloma (MM) patients. Recent research efforts led to the discovery of newer agents that target enzymes modulating protein ubiquitin-conjugation/deconjugation rather than the proteasome itself, with the goal of generating more specific and less toxic antitumor therapies. Ubiquitylation is a dynamic reversible process coordinated by many enzymes: ubiquitin ligases attach ubiquitin to proteins allowing for their degradation, whereas deubiquitylating enzymes deconjugate ubiquitin from target proteins, thereby preventing their proteasome-mediated degradation. RPN13 is ubiquitin receptor within the 19S regulatory particle lid of the proteasome that recognizes ubiquitylated proteins marked for degradation by 20S core particle. Here we examined the role of RPN13 in MM using both biochemical and RNA interference strategies. Materials and Methods We utilizedMM cell lines, patient tumor cells, and peripheral blood mononuclear cells (PBMCs) from normal healthy donors. Drug sensitivity/cell viability and apoptosis were assessed using XTT/MTT and Annexin V staining, respectively. MM.1S cells were transiently transfected with control short interfering RNA (siRNA), RPN13 siRNA ON TARGET plus SMART pool siRNA using the cell line Nucleofector Kit V. Synergistic/additive anti-MM activity was assessed by isobologram analysisusing “CalcuSyn” software program. Signal transduction pathways were evaluated using immunoblotting. Proteasome activity was measured as previously described (Chauhan et al., Cancer Cell 2005, 8:407-419). Statistical significance of data was determined using a Student’s t test. RA190 was purchased from Xcess Biosciences, USA; and bortezomib, lenalidomide, and pomalidomide were purchased from Selleck chemicals, USA. Results Analysis of RPN13/ADRM1 expression showed a significantly higher level in primary patient MM cells (n=73) versus normal plasma cells (n=15) (p < 0.004). Similarly, immunoblot analysis showed elevated RPN13 in MM cells versus normals. RPN13 siRNA knockdown significantly decreased MM cell viability (p < 0.001; n=3). To further validate our siRNA data, we utilized recently reported novel agent RA190 (bis-benzylidine piperidone) that targets RPN13. RA190 inhibits recognition of polyubiquitylated proteins and their deubiquitylation, which in turn prevents their degradation (Anchoori et al., Cancer Cell 2013, 24:791). Treatment of MM cell lines (MM.1S, MM.1R, RPMI-8226, ARP-1, ANBL6.WT, and ANBL6.BR) and primary patient cells for 48h significantly decreased their viability (IC50 range 200nM to 600nM; p < 0.001 for all cell lines; n=3) without markedly affecting PBMCs from normal healthy donors, suggesting specific anti-MM activity and a favorable therapeutic index for RA190. Tumor cells were obtained from patients whose disease was progressing while on bortezomib, dexamethasone, and lenalidomide therapies. Moreover, the cytotoxicity of RA190 was observed in MM cell lines sensitive and resistant to conventional (dex) and novel (bortezomib) therapies. Furthermore, RA190 inhibits proliferation of MM cells even in the presence of BM stromal cells. Mechanistic studies show that RA190-triggered MM cell death is associated with 1) accumulation of cells in early and late apoptotic phase; 2) increase in polyubiquinated proteins; and 3) activation of caspases mediating both intrinsic and extrinsic apoptotic pathways. Importantly, RA190-induced apoptosis in MM cells occurs in a p53-independent manner, since RA190 triggered significant apoptosis in both p53-null (ARP-1) and p53-mutant (RPMI-8226) MM cells (p < 0.004). Finally, combining RA190 with lenalidomide, pomalidomide, or bortezomib induces synergistic/additive anti-MM activity, and overcomes drug resistance. Conclusion Our preclinical data showing efficacy of RA190 in MM disease models validates targeting ubiquitin receptors upstream of the proteasome in the ubiquitin proteasomal cascade to overcome proteasome inhibitor resistance, and provides the framework for clinical evaluation of RPN13 inhibitors to improve patient outcome in MM. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
1983 ◽  
Vol 61 (4) ◽  
pp. 790-798
Author(s):  
K Oshimi ◽  
Y Oshimi ◽  
T Motoji ◽  
S Kobayashi ◽  
H Mizoguchi

Studies were undertaken to determine whether leukemia and lymphoma cells would be lysed by autologous and allogeneic interferon (IFN) activated peripheral blood mononuclear cells (PBMC). PBMC from healthy donors and from patients were cultured with and without 500 U of highly purified human fibroblast IFN/ml for 24 hr, and then their cytotoxic activity was assayed by a 5-hr 51Cr-release test. Of primary tumor cells isolated from patients, the cells of 5 of 15 patients with acute nonlymphocytic leukemia (ANLL), 5 of 9 patients with acute lymphocytic leukemia (ALL), 2 of 3 patients with chronic phase chronic myelogenous leukemia (CML), 2 of 3 patients with blastic phase CML, 1 patient with hairy cell leukemia, and 6 patients with diffuse non-Hodgkin's lymphoma were sensitive to IFN-activated PBMC of healthy donors, whereas the cells of 3 of the ANLL patients, 2 of the ALL patients, and 3 of the lymphoma patients were sensitive to unstimulated PBMC. Of the ANLL cells tested, myeloblasts, promyelocytes, and monoblasts were sensitive to either unstimulated or IFN-activated PBMC. Compared with the ANLL cells, the lymphoma cells were statistically significantly sensitive to activated effector cells (p less than 0.025). On the basis of the unlabeled target competition test and the recovery of cytotoxic cells within the fractions enriched in natural killer (NK) cells, NK cells appeared to mediate the above unstimulated and IFN-boosted cytotoxicity. In experiments using autologous effector-target cells from 11 patients, the addition of 500 U of IFN/ml enhanced the lytic activity of PBMC against autologous lymphoma cells in 1 patient, and higher concentrations of IFN, i.e., 2500 or 3500 U/ml, enhanced their cytotoxic activity against autologous leukemia or lymphoma cells in 4 of 8 patients. These data indicate that IFN-activated allogeneic PBMC are able to lyse both myeloid and lymphoid tumor cells, whereas higher concentrations of IFN are required to enhance lytic activity against autologous tumor cells.


2019 ◽  
Vol 17 (4) ◽  
pp. 379-387 ◽  
Author(s):  
Yan Sun ◽  
Xiao-li Liu ◽  
Dai Zhang ◽  
Fang Liu ◽  
Yu-jing Cheng ◽  
...  

Background:Intraplaque angiogenesis, the process of generating new blood vessels mediated by endothelial cells, contributes to plaque growth, intraplaque hemorrhage, and thromboembolic events. Platelet-derived Exosomes (PLT-EXOs) affect angiogenesis in multiple ways. The ability of miR-126, one of the best-characterized miRNAs that regulates angiogenesis, carried by PLT-EXOs to influence angiogenesis via the regulation of the proliferation and migration of endothelial cells is unknown. In this study, we aimed to investigate the effects of PLT-EXOs on angiogenesis by Human Umbilical Vein Endothelial Cells (HUVECs).Methods:We evaluated the levels of miR-126 and angiogenic factors in PLT-EXOs from Acute Coronary Syndrome (ACS) patients and healthy donors by real-time Polymerase Chain Reaction (PCR) and western blotting. We incubated HUVECs with PLT-EXOs and measured cell proliferation and migration with the Cell Counting Kit-8 assay and scratch assay, respectively. We also investigated the expression of miR-126 and angiogenic factors in HUVECs after exposure to PLT-EXOs by western blotting and real-time PCR.Results:PLT-EXOs from ACS patients contained higher levels of miR-126 and angiogenic factors, including Vascular Endothelial Growth Factor (VEGF), basic Fibroblast Growth Factor (bFGF), and Transforming Growth Factor Beta 1 (TGF-β1), than those from healthy donors (p<0.05). Moreover, the levels of exosomal miR-126 and angiogenic factors were increased after stimulation with thrombin (p<0.01). HUVEC proliferation and migration were promoted by treatment with activated PLT-EXOs (p<0.01); they were accompanied by the over-expression of miR-126 and angiogenic factors, including VEGF, bFGF, and TGF-β1 (p<0.01).Conclusion:Activated PLT-EXOs promoted the proliferation and migration of HUVECs, and the overexpression of miR-126 and angiogenic factors, thereby elucidating potential new therapeutic targets for intraplaque angiogenesis.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Nirupama D. Verma ◽  
Andrew D. Lam ◽  
Christopher Chiu ◽  
Giang T. Tran ◽  
Bruce M. Hall ◽  
...  

AbstractResting and activated subpopulations of CD4+CD25+CD127loT regulatory cells (Treg) and CD4+CD25+CD127+ effector T cells in MS patients and in healthy individuals were compared. Peripheral blood mononuclear cells isolated using Ficoll Hypaque were stained with monoclonal antibodies and analysed by flow cytometer. CD45RA and Foxp3 expression within CD4+ cells and in CD4+CD25+CD127loT cells identified Population I; CD45RA+Foxp3+, Population II; CD45RA−Foxp3hi and Population III; CD45RA−Foxp3+ cells. Effector CD4+CD127+ T cells were subdivided into Population IV; memory /effector CD45RA− CD25−Foxp3− and Population V; effector naïve CD45RA+CD25−Foxp3−CCR7+ and terminally differentiated RA+ (TEMRA) effector memory cells. Chemokine receptor staining identified CXCR3+Th1-like Treg, CCR6+Th17-like Treg and CCR7+ resting Treg. Resting Treg (Population I) were reduced in MS patients, both in untreated and treated MS compared to healthy donors. Activated/memory Treg (Population II) were significantly increased in MS patients compared to healthy donors. Activated effector CD4+ (Population IV) were increased and the naïve/ TEMRA CD4+ (Population V) were decreased in MS compared to HD. Expression of CCR7 was mainly in Population I, whereas expression of CCR6 and CXCR3 was greatest in Populations II and intermediate in Population III. In MS, CCR6+Treg were lower in Population III. This study found MS is associated with significant shifts in CD4+T cells subpopulations. MS patients had lower resting CD4+CD25+CD45RA+CCR7+ Treg than healthy donors while activated CD4+CD25hiCD45RA−Foxp3hiTreg were increased in MS patients even before treatment. Some MS patients had reduced CCR6+Th17-like Treg, which may contribute to the activity of MS.


Author(s):  
Aurore Dumond ◽  
Etienne Brachet ◽  
Jérôme Durivault ◽  
Valérie Vial ◽  
Anna K. Puszko ◽  
...  

Abstract Background Despite the improvement of relapse-free survival mediated by anti-angiogenic drugs like sunitinib (Sutent®), or by combinations of anti-angiogenic drugs with immunotherapy, metastatic clear cell Renal Cell Carcinoma (mccRCC) remain incurable. Hence, new relevant treatments are urgently needed. The VEGFs coreceptors, Neuropilins 1, 2 (NRP1, 2) are expressed on several tumor cells including ccRCC. We analyzed the role of the VEGFs/NRPs signaling in ccRCC aggressiveness and evaluated the relevance to target this pathway. Methods We correlated the NRP1, 2 levels to patients’ survival using online available data base. Human and mouse ccRCC cells were knocked-out for the NRP1 and NRP2 genes by a CRISPR/Cas9 method. The number of metabolically active cells was evaluated by XTT assays. Migration ability was determined by wound closure experiments and invasion ability by using Boyden chamber coated with collagen. Production of VEGFA and VEGFC was evaluated by ELISA. Experimental ccRCC were generated in immuno-competent/deficient mice. The effects of a competitive inhibitor of NRP1, 2, NRPa-308, was tested in vitro and in vivo with the above-mentioned tests and on experimental ccRCC. NRPa-308 docking was performed on both NRPs. Results Knock-out of the NRP1 and NRP2 genes inhibited cell metabolism and migration and stimulated the expression of VEGFA or VEGFC, respectively. NRPa-308 presented a higher affinity for NRP2 than for NRP1. It decreased cell metabolism and migration/invasion more efficiently than sunitinib and the commercially available NRP inhibitor EG00229. NRPa-308 presented a robust inhibition of experimental ccRCC growth in immunocompetent and immunodeficient mice. Such inhibition was associated with decreased expression of several pro-tumoral factors. Analysis of the TCGA database showed that the NRP2 pathway, more than the NRP1 pathway correlates with tumor aggressiveness only in metastatic patients. Conclusions Our study strongly suggests that inhibiting NRPs is a relevant treatment for mccRCC patients in therapeutic impasses and NRPa-308 represents a relevant hit.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Sasan Ghaffari ◽  
Monireh Torabi-Rahvar ◽  
Sajjad Aghayan ◽  
Zahra Jabbarpour ◽  
Kobra Moradzadeh ◽  
...  

Abstract Background The successful ex vivo expansion of T-cells in great numbers is the cornerstone of adoptive cell therapy. We aimed to achieve the most optimal T-cell expansion condition by comparing the expansion of T-cells at various seeding densities, IL-2 concentrations, and bead-to-cell ratios. we first expanded the peripheral blood mononuclear cells (PBMCs) of a healthy donor at a range of 20 to 500 IU/mL IL-2 concentrations, 125 × 103 to 1.5 × 106 cell/mL, and 1:10 to 10:1 B:C (Bead-to-cell) ratios and compared the results. We then expanded the PBMC of three healthy donors using the optimized conditions and examined the growth kinetics. On day 28, CD3, CD4, and CD8 expression of the cell populations were analyzed by flow cytometry. Results T-cells of the first donor showed greater expansion results in IL-2 concentrations higher than 50 IU/mL compared to 20 IU/mL (P = 0.02). A seeding density of 250 × 103 cell/mL was superior to higher or lower densities in expanding T-cells (P = 0.025). Also, we witnessed a direct correlation between the B:C ratio and T-cell expansion, in which, in 5:1 and 10:1 B:C ratios T-cell significantly expanded more than lower B:C ratios. The results of PBMC expansions of three healthy donors were similar in growth kinetics. In the optimized condition, 96–98% of the lymphocyte population expressed CD3. While the majority of these cells expressed CD8, the mean expression of CD4 in the donors was 19.3, 16.5, and 20.4%. Conclusions Our methodology demonstrates an optimized culture condition for the production of large quantities of polyclonal T-cells, which could be useful for future clinical and research studies.


Sign in / Sign up

Export Citation Format

Share Document